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We consider quantum diffusion in ultraslow-roll (USR) inflation. Using the ΔN formalism, we present
the first stochastic calculation of the probability distribution PðRÞ of the curvature perturbation during
USR. We capture the nonlinearity of the system, solving the coupled evolution of the coarse-grained
background with random kicks from the short wavelength modes, simultaneously with the mode evolution
around the stochastic background. This leads to a non-Markovian process from which we determine the
highly non-Gaussian tail of PðRÞ. Studying the production of primordial black holes in a viable model, we
find that stochastic effects during USR increase their abundance by a factor of ∼105 compared with the
Gaussian approximation.
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Introduction.—Compelling evidence [1] supports a
phase of accelerated expansion, inflation, as the leading
framework for the early universe [2–15]. In the simplest
models, a scalar field—the inflaton—rolls down its poten-
tial with the Hubble friction and potential push balanced.
This is known as slow-roll (SR). However, if the potential
has a very flat section or a shallow minimum, the potential
push becomes negligible, and the inflaton velocity falls
rapidly due to Hubble friction. This is called ultraslow-roll
(USR) [16–20]. While SR generates close to scale invariant
and almost Gaussian perturbations, as observed in the
cosmic microwave background (CMB), the perturbations
produced by USR are far from scale invariant and can be
highly non-Gaussian. This implies that the inflaton cannot
be in USR when the observed CMB perturbations are
generated [21]. However, if the inflaton enters USR after-
ward, large perturbations can be created on small scales,
potentially seeding primordial black holes (PBH) [24–37],
a longstanding dark matter candidate [38–45].
During inflation, initially sub-Hubble (k ≫ aH) quan-

tum fluctuations are amplified and stretched to super-
Hubble scales (k ≪ aH), where k is the comoving wave
number, a is the scale factor, and H ≡ _a=a is the Hubble
rate. Once modes reach super-Hubble scales, they can be
coarse-grained, contributing stochastic noise to the evolu-
tion of the background formed by long wavelength modes,
which are squeezed and “classicalized” [46–51]. This is
described by the formalism of stochastic inflation [22,
52–84]. Stochastic effects can be particularly relevant
during USR for two reasons: (i) the classical push from
the potential is negligible, so the inflaton velocity decays

rapidly and the background evolution is more sensitive to
stochastic kicks and (ii) the perturbations are larger and
hence give stronger kicks [22,34–36,82,83,85–88].
Stochastic effects on the power spectrum PRðkÞ of the

curvature perturbation R generated during USR have been
studied in [22,34–36,82,85–88] (see [35,82,86] for higher
moments). It was demonstrated in [83,89], however, that
stochastic effects lead to an exponential tail in the prob-
ability distribution PðRÞ, which overtakes the linear theory
Gaussian tail. Calculating the power spectrum PRðkÞ is
therefore not enough to determine the PBH abundance
todayΩPBH, which is exponentially sensitive to the shape of
the tail of PðRÞ. In this Letter we present the first
calculation of the non-Gaussian tail of PðRÞ due to
stochastic effects during USR. We solve simultaneously
the evolution of the background dynamics with stochastic
kicks from the small wavelength modes, and the evolution
of the small wavelength modes that live in this stochastic
background. We consider a model where the standard
model Higgs is the inflaton [90,91]. We use the renorm-
alization group running to create a shallow minimum that
leads to USR, tuned to produce PBHs with mass
MPBH ¼ 7 × 10−15 M⊙, with an abundance that contributes
significantly to dark matter in the Gaussian approximation
[32] (see also [25–27,31,92]). We adjust the SR part of the
potential by hand to fit CMB observations.
Stochastic formalism.—We consider a spatially flat

Friedmann–Lemaître–Robertson–Walker (FLRW) back-
ground metric with scalar perturbations, split into long and
short wavelength modes. Correspondingly, the inflaton is
decomposed as ϕ¼ ϕ̄ðt; x⃗Þþδϕðt; x⃗Þ, where ϕ̄¼ð2πÞ−3=2
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R
k<kc

d3kϕk⃗ðtÞe−ik⃗·x⃗ and δϕ¼ð2πÞ−3=2Rk>kc d3kϕk⃗ðtÞe−ik⃗·x⃗.
The long wavelength part ϕ̄ describes the inflaton coarse
grained over a super-Hubble patch of length 2π=kc, where
kc ¼ σaH is a coarse-graining scale with σ ≪ 1 (we
discuss the precise value later).
In the leading long wavelength approximation, the

background follows the Friedmann equations, while the
short wavelength modes obey the linear perturbation
equations over the FLRW background [93,94]. As the
universe expands, short wavelength modes are stretched to
super-Hubble scales. Going beyond the leading approxi-
mation, the resulting change in the local background is
captured by the stochastic formalism, where the back-
ground evolution is given by a Langevin equation that
includes the backreaction of the short wavelength pertur-
bations [22,52–84]. The short wavelength modes contribute
random noise to the local background equations. The
randomness is due to the quantum origin of the initial
conditions of the short wavelength modes.
Except for a few studies (e.g., [66–68]), previous works

solved the short wavelength modes over a nonstochastic
background. We go one step further by including the effect
of the stochastic change of the local background on the
dynamics of the short wavelength modes, capturing the
interaction between the modes and the background at every
moment. This leads to a non-Markovian process. The noise
depends on the short wavelength modes, which depend on
the coarse-grained field, so each new kick is affected by the
history of previous kicks.
The equations of motion of the coarse-grained field with

stochastic effects are obtained as usual, including the short
wavelength contribution in the time derivatives only,
reinterpreted as stochastic noise. For the short wavelength
modes, we use linear perturbation theory in the spatially flat
gauge, and replace the background fields by their coarse-
grained counterparts. The equations of motion read (with
the reduced Planck mass set to unity)

ϕ̄0 ¼ π̄ þ ξϕ; ð1Þ

π̄0 ¼ −ð3þH0=HÞπ̄ − V;ϕ̄=H
2 þ ξπ; ð2Þ

2V ¼ ð6 − π2ÞH2; ð3Þ

δϕk⃗
00 þ ð3þH0=HÞδϕk⃗

0 þ ω2
kδϕk⃗ ¼ 0; ð4Þ

where Vðϕ̄Þ is the inflaton potential; N ≡ lnða=a�Þ is the
number of e-folds (� refers to the Hubble exit of the
CMB pivot scale k� ¼ 0.05 Mpc−1); 0 ≡ d=dN; ξϕ
and ξπ are the field and momentum noise (following
Gaussian statistics), respectively; and ω2

k ≡ k2=ðaHÞ2þ
π̄2ð3 þ 2H0=H − H0=H2Þ þ 2π̄V;ϕ̄=H

2 þ V;ϕ̄ ϕ̄=H
2. We

initialize the modes deep inside the Hubble radius
in the Bunch–Davies vacuum, so δϕk⃗ ¼ 1=ða ffiffiffiffiffi

2k
p Þ,

δϕ0
k⃗
¼ −½1þ iðk=aHÞ�δϕk⃗. We separate short and long

wavelength modes with a step function in momentum
space, so ξϕ and ξπ are white noise, with hξϕðN1ÞξϕðN2Þi¼
ðk3=2π2Þð1þH0=HÞjδϕk⃗j2jk¼σaHδðN1−N2Þ, and an analo-
gous correlator for ξπ [87]. The time evolution of ϕ̄ receives
stochastic kicks at every finite step with variance
hΔϕ̄2i ¼ dNðk3=2π2Þð1þH0=HÞjδϕk⃗j2jk¼σaH, where dN
is the time step of the numerical calculation. As the
perturbations are highly squeezed (as we will discuss
shortly), the momentum kicks are strongly correlated with
the field kicks, Δπ̄ ¼ Reðδϕ0

k⃗
=δϕk⃗ÞΔϕ̄.

Inflation model.—We consider an inflaton potential
VðϕÞ where the CMB perturbations are generated at a
plateau, and there is a shallow local minimum at smaller
field values, as shown in Fig. 1. The inflaton starts in SR,
enters USR as it rolls over the minimum, and then returns to
SR until the end of inflation. We consider a model where
the Standard Model Higgs is the inflaton, and the local
minimum is produced by quantum corrections [32], tuned
to produce PBHs with mass MPBH ¼ 7 × 10−15 M⊙, with
an abundance that roughly agrees with the observed dark
matter density in the Gaussian approximation. Contrary to
[32], here we adjust the plateau by hand to fit CMB
observations [1]. We give the details in the Supplemental
Material [95]. At the CMB pivot scale k� the spectral index
is ns ¼ 0.966, and the tensor-to-scalar ratio is r ¼ 0.012.
Squeezing and classicalization.—For the stochastic for-

malism to be valid, the perturbations must be classical by
the time they join the background. Classicality can be
characterized by squeezing of the mode wave functions. A
squeezed state can be written as [47,96]

FIG. 1. The inflationary potential, with a plateau and a shallow
local minimum. The initial field value ϕ̄i (close to the CMB pivot
scale), the end of USR ϕ̄PBH, and the end of inflation ϕ̄f (where
the simulation ends) are marked. The vertical axis of the inset is
stretched relative to the main plot to better bring out the shape of
the potential close to the minimum.
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jψi ¼ exp

�
1

2
ðs�â2 − sâ†2Þ

�
j0i; ð5Þ

where s ¼ re2iφ is the squeezing parameter, and â; â† are
standard ladder operators that satisfy ½â; â†� ¼ 1. They
determine the vacuum state, âj0i ¼ 0, with respect to
which the squeezing is measured. The amplitude r indicates
how squeezed the state is, and the phase φ gives the
squeezing direction in phase space.
Choosing Qk⃗ ¼

ffiffiffi
k

p
aδϕk⃗ and Pk⃗ ¼ a2Hδϕ0

k⃗
=

ffiffiffi
k

p
for the

canonical variables that define the vacuum, leads to the
Bunch–Davies vacuum for the sub-Hubble modes. The
corresponding operators are related to the ladder operators
in the usual way, and we have

hψ k⃗jQ̂2

k⃗
þ P̂2

k⃗
jψ k⃗i ¼ coshð2rkÞ: ð6Þ

The value of rk is then a proxy for classicalization. For the
Bunch–Davies vacuum, the mode initially has the
minimum uncertainty wave packet, for which rk ¼ 0,
and rk grows as the phase space probability distribution
gets squeezed. Large rk implies that the probability dis-
tribution covers a large region in phase space, where the

expectation value of the commutator ½Q̂k⃗; P̂k⃗0 � ¼ iδðk⃗ − k⃗0Þ
is negligible compared to expectation values such as
hψ k⃗jQ̂k⃗P̂k⃗0 þ P̂k⃗Q̂k⃗0 jψ k⃗i. Thus, all relevant expectation
values can be reproduced by a classical probability dis-
tribution. Squeezing makes the operators Q̂k⃗ and P̂k⃗
highly correlated, so the field and momentum kicks become
approximately proportional to each other. Note that rk ≫ 1
corresponds to a large occupation number.
Modes get more squeezed as they are pushed further

outside the Hubble radius. The coarse-graining parameter σ
has to be small enough to ensure that the mode probability
distribution is sufficiently classical. However, the larger the
value of σ, the more interactions between the short and long
wavelength modes we capture. We choose the value
σ ¼ 0.01, for which all modes satisfy coshð2rkÞ > 100
when they exit the coarse-graining scale.
Gauge dependence.—The perturbation equation of

motion (4) is written in the spatially flat gauge, which is
convenient for calculating the mode functions, whereas
stochastic Equations (1) and (2) for the background are
written in the uniform-N gauge, as N does not receive
kicks. As shown in [87], the correction to the mode
functions when changing from the flat gauge to the uni-
form-N gauge is small both in SR and USR. We have
checked numerically that in our calculation this holds at all
times, including during transitions between SR and USR,
except for a small subset of the modes that have little
quantitative impact. Gauge difference therefore has negli-
gible impact on our results.
ΔN formalism.—We aim to calculate the coarse-grained

comoving curvature perturbation R in a given patch of

space, since this determines whether the patch collapses
into a PBH. We use the ΔN formalism [94,97–99], where
R is given by the difference between the number of e-folds
N of the local patch and the mean number of e-folds N̄,
measured between an initial unperturbed hypersurface with
fixed initial field value ϕ̄i and a final hypersurface of
constant field value ϕ̄f:

R ¼ N − N̄ ≡ ΔN: ð7Þ
When we solve the stochastic equations, we follow a patch
of size determined by the coarse-graining scale kc ¼ σaH,
which changes in time. The patch size at the end of the
calculation gives the PBH scale we probe; we fix this to the
value kPBH, which we discuss below. To ensure that kPBH
gives the final patch size, we stop the time evolution of kc
once kc ¼ kPBH. After this, no modes from δϕ contribute to
ϕ̄: the stochastic noise is switched off, so modes with larger
k do not give kicks. This is a meaningful procedure as
perturbations with wavelengths smaller than the size of the
collapsing region should not affect PBH formation; they
behave as noise that is averaged out in the coarse-graining
process. We continue to evolve the local background
without kicks until the end of inflation, where the field
value is ϕ̄f. We record the final value of N for each
simulation, and build statistics over many runs to find the
probability distribution PðNÞ. The numerical algorithm is
described in the Supplemental Material [95].
PBH production.—When a perturbation of wave number

k re-enters the Hubble radius during the radiation-
dominated phase after inflation, it may collapse into a
black hole of mass

M ¼ 4

3
πγH−3

k ρk ≈ 5.6 × 1015γ

�
k
k�

�
−2

M⊙; ð8Þ

where M⊙ ≈ 2 × 1033 g, γ ≈ 0.2 is a parameter character-
izing the collapse [100], andHk and ρk are, respectively, the
background Hubble rate and energy density at Hubble
entry. We assume standard expansion history.
The abundance depends on whether the collapse is

computed from a peak analysis or from density threshold
considerations, on how the threshold is chosen, and the
mapping betweenR and the density contrast [29,100–117].
To highlight the impact of the stochastic effects during USR
versus the Gaussian approximation, we simply consider a
treatment where the collapse occurs if the curvature
perturbation exceeds the threshold Rc ¼ 1. The fraction
of simulations where R > Rc gives the initial PBH energy
density fraction β. Since PBHs behave as matter, this
fraction grows during radiation domination, and today it is

ΩPBH ≈ 9 × 107γ
1
2β

�
M
M⊙

�
−1
2

: ð9Þ
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It is often assumed that R follows a Gaussian distribution
(e.g., [104,118]), with variance σ2R ¼ R kPBH

kIR
dðln kÞPRðkÞ,

where kIR is a cutoff corresponding roughly to the size of
the present Hubble radius, and whose precise value makes
no difference to our results. The Gaussian approximation
gives

β ¼ 2

Z
∞

Rc

dR
1ffiffiffiffiffiffi
2π

p
σR

e
− R2

2σ2
R ≈

ffiffiffi
2

p
σRffiffiffi

π
p

Rc
e
− R2

c
2σ2

R ; ð10Þ

with the conventional factor of 2 [119]. Our model is fine-
tuned to give a substantial PBH abundance in the
Gaussian approximation. We want to capture all the strong
perturbations generated during USR, so we choose
kPBH ¼ e33.6k�, which exits the Hubble radius at the end
of USR, and corresponds to M ¼ 7 × 10−15 M⊙. PBHs of
this mass can constitute all of the dark matter [120–122]. In
the Gaussian approximation we obtain σ2R ¼ 0.0149 and
β ¼ 2.7 × 10−16. Using (9) this leads to an abundance
ΩPBH ¼ 0.13. However, we will see below that this
Gaussian approximation severely underestimates the PBH
abundance.
In reality, all PBHs will not have exactly the same mass.

The mass distribution could be estimated by varying kPBH.
However, USR produces a sharp peak in the perturbations,
corresponding to a strongly peaked distribution of PBH
masses. To keep the discussion simple, we stick to the
value M ¼ 7 × 10−15 M⊙.
Results.—We have run over 1011 simulations (using over

1 million CPU hours) to find the distribution PðNÞ of the
number of e-folds between the CMB pivot scale and the
end of inflation (see Fig. 2). The red solid line is the full
numerical result, and the dotted black line is a Gaussian fit.
The deviation from Gaussianity is evident for jΔNj≳ 0.5.
Although the stochastic kicks push the field in either
direction with equal probability, it is more likely to spend
a longer (rather than shorter) time in the USR region,
because the field slows down there, skewing ΔN
toward positive values. The Gaussian fit has variance
σ2R ¼ 0.0152, close to the Gaussian estimate used to build
the potential, and gives β ¼ 5.3 × 10−16.
Our data reaches ΔN ¼ 1, but the region ΔN > 0.95 is

poorly sampled. The mean is N̄ ¼ 51.64. We estimate that
resolving the tail of the distribution beyond ΔN ¼ 1 would
require 102 times more simulations, which translates into
∼100 million CPU hours. The distribution for ΔN ≳ 0.6 is
well fit by a single exponential. The black dashed line in
Fig. 2 shows the best fit PðNÞ ¼ eA−BN to the data between
ΔN ¼ 0.75 andΔN ¼ 0.95. A jackknife analysis where we
divide our data into 20 subsamples gives the mean values
and error estimates A ¼ 1699� 61, B ¼ 32.7� 1.2. The
mean and the best fit are very close. To determine the
PBH abundance, we extrapolate this exponential
beyond the resolved region. As the abundance falls steeply,

the dominant contribution comes from just beyond the
threshold ΔN ¼ 1. We get the PBH abundance β ¼
2
R∞
N̄þ1

dNPðNÞ ¼ 2B−1eA−BðN̄þ1Þ ¼ 3.4 × 10−11, which
corresponds to ΩPBH ¼ 1.6 × 104. The jackknife analysis
gives 25% errors on these values. The difference from the
Gaussian approximation for the PBH abundance today is a
factor of∼105. After our results appeared, the form of PðNÞ
with an exponential tail in stochastic USR was calculated
analytically [123].
The blue dash-dotted line in Fig. 2 shows a simplified

treatment where the modes in the noise are fixed to their SR
super-Hubble limit, jδϕk⃗j ¼ H=ð ffiffiffi

2
p

k3=2Þ with H0 ≪ H, so
the noise is proportional to the Hubble parameter. (The
similarity of this curve with the Gaussian fit to the full
computation for ΔN > 0 is purely accidental.) This is a
usual assumption in stochastic inflation used from the
original work [52] to the most recent studies [123]. It
neglects the nonlinear effects we capture in our simulations,
both mode evolution and the stochastic change of the
coarse-grained background on the evolution of the modes,
which makes the process non-Markovian. Fitting an expo-
nential to the curve and extrapolating beyond ΔN ¼ 1, the
simplified treatment underpredicts the PBH abundance by 3
orders of magnitude, underlining the importance of mode
evolution in USR.
Conclusions.—Applying the ΔN formalism, we find that

stochastic effects in USR generate an exponential tail in the
probability distribution PðRÞ of the curvature perturbation,
as generally expected [83,89]. Considering a realistic
model, tailored to fit CMB observations and to give roughly
the observed dark matter abundance in PBHs (of mass

FIG. 2. The probability distribution for the number of e-folds.
The bottom label indicates the total number of e-folds, the top
label indicates deviation from the mean. The red solid line is the
full result, the black dotted line is a Gaussian fit to all points, and
the black dashed line is an exponential fit to the tail. The blue
dash-dotted line is the simplified case discussed in the text. The
vertical line marks the collapse threshold ΔN ¼ 1.
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M ¼ 7 × 10−15 M⊙) in the Gaussian approximation, we
find that stochastic effects during USR increase the PBH
abundance today by a factor of ∼105. Our results demon-
strate that when considering PBHs seeded during USR, it is
crucial to calculate the shape of the tail of the probability
distribution PðRÞ, instead of simply using the power
spectrum PR based on the assumption that PðRÞ is
Gaussian. Our calculation serves as a proof of concept
that the Gaussian approximation can underestimate the
PBH abundance by orders of magnitude. Similar behavior
is expected in any USR scenario, with the quantitative
effect depending on the model. Studying USR scenarios
leading to PBHs with initial mass 5 M⊙, 1800 M⊙, and
103 kg (to produce Planck-scale relics), we find an expo-
nential tail in all cases, and significant discrepancy in the
dark matter abundance with respect to the Gaussian case.
We will report the details of this elsewhere.
As a final remark, we note that our results are sensitive to

thevalue of σ, which gives an offset between the time amode
exits the Hubble radius and the time it is coarse grained,
when it “kicks” the local background. In SR,modes freeze to
an almost scale-invariant spectrum at super-Hubble scales,
so the stochastic results are insensitive to the value of σ as
long as it is sufficiently small that modes have stopped
evolving [52] (but not too small [53,55,57,81]). In USR this
is not the case, because the near scale invariance is lost, and
super-Hubble perturbations can also evolve for longer. The
usual simplified treatment where mode evolution is
neglected is oblivious to this problem. The validity of the
choice of σ (more generally, the form of the stochastic
equation) should be checked with a first principle derivation
of the separation between system and environment in
quantum field theory. While such derivations exist for
stochastic SR inflation, none of the ones with explicit
Langevin equations apply to USR [54–56,59–65,68–
79,82,84]. The dependence on σ suggests that USR may
be a more sensitive probe of decoherence and the quantum
nature of inflationary perturbations than SR.
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[114] A. Escrivà, C. Germani, and R. K. Sheth, Phys. Rev. D 101,
044022 (2020).

[115] S. Young, Int. J. Mod. Phys. D 29, 2030002 (2020).
[116] Y.-P. Wu, Phys. Dark Universe 30, 100654 (2020).
[117] K. Tokeshi, K. Inomata, and J. Yokoyama, J. Cosmol.

Astropart. Phys. 12 (2020) 038.
[118] A. M. Green, A. R. Liddle, K. A. Malik, and M. Sasaki,

Phys. Rev. D 70, 041502 (2004).
[119] W. H. Press and P. Schechter, Astrophys. J. 187, 425

(1974).
[120] B. Carr and F. Kuhnel, Annu. Rev. Nucl. Part. Sci. 70, 355

(2020).
[121] A. M. Green and B. J. Kavanagh, J. Phys. G 48, 043001

(2021).
[122] B. Carr, K. Kohri, Y. Sendouda, and J. Yokoyama,

arXiv:2002.12778.
[123] C. Pattison, V. Vennin, D. Wands, and H. Assadullahi, J.

Cosmol. Astropart. Phys. 04 (2021) 080.

PHYSICAL REVIEW LETTERS 127, 101302 (2021)

101302-7

https://doi.org/10.1088/0264-9381/22/7/013
https://doi.org/10.1088/0264-9381/22/7/013
https://doi.org/10.1103/PhysRevD.88.084051
https://doi.org/10.1103/PhysRevD.88.084051
https://doi.org/10.1103/PhysRevD.89.029903
https://doi.org/10.1088/1475-7516/2014/07/045
https://doi.org/10.1088/1475-7516/2014/07/045
https://doi.org/10.1088/0264-9381/30/14/145009
https://doi.org/10.1088/0264-9381/30/14/145009
https://doi.org/10.1103/PhysRevD.103.063538
https://doi.org/10.1103/PhysRevD.103.063538
https://doi.org/10.1103/PhysRevLett.122.141302
https://doi.org/10.1103/PhysRevLett.122.141302
https://doi.org/10.1103/PhysRevD.100.123524
https://doi.org/10.1088/1475-7516/2019/12/029
https://doi.org/10.1088/1475-7516/2019/12/029
https://doi.org/10.1088/1475-7516/2019/11/012
https://doi.org/10.1088/1475-7516/2019/11/012
https://doi.org/10.1016/j.dark.2020.100466
https://doi.org/10.1088/1475-7516/2021/01/030
https://doi.org/10.1088/1475-7516/2021/01/030
https://doi.org/10.1103/PhysRevD.101.063520
https://doi.org/10.1103/PhysRevD.101.063520
https://doi.org/10.1103/PhysRevD.101.044022
https://doi.org/10.1103/PhysRevD.101.044022
https://doi.org/10.1142/S0218271820300025
https://doi.org/10.1016/j.dark.2020.100654
https://doi.org/10.1088/1475-7516/2020/12/038
https://doi.org/10.1088/1475-7516/2020/12/038
https://doi.org/10.1103/PhysRevD.70.041502
https://doi.org/10.1086/152650
https://doi.org/10.1086/152650
https://doi.org/10.1146/annurev-nucl-050520-125911
https://doi.org/10.1146/annurev-nucl-050520-125911
https://doi.org/10.1088/1361-6471/abc534
https://doi.org/10.1088/1361-6471/abc534
https://arXiv.org/abs/2002.12778
https://doi.org/10.1088/1475-7516/2021/04/080
https://doi.org/10.1088/1475-7516/2021/04/080

