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We present a collision model for the charging of a quantum battery by identical nonequilibrium qubit
units. When the units are prepared in a mixture of energy eigenstates, the energy gain in the battery can be
described by a classical random walk, where both average energy and variance grow linearly with time.
Conversely, when the qubits contain quantum coherence, interference effects buildup in the battery and lead
to a faster spreading of the energy distribution, reminiscent of a quantum random walk. This can be
exploited for faster and more efficient charging of a battery initialized in the ground state. Specifically, we
show that coherent protocols can yield higher charging power than any possible incoherent strategy,
demonstrating a quantum speed-up at the level of a single battery. Finally, we characterize the amount of
extractable work from the battery through the notion of ergotropy.
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The development of thermodynamic protocols exploiting
quantum effects like coherences and entanglement to
outperform their classical counterparts has been a major
focus in the field of quantum thermodynamics [1,2].
A simple scenario to explore this question is a quantum
battery: a quantum system that receives or supplies energy
[3–5]. Examples include simple qubit batteries [6,7],
collective spins [8], interacting spin chains [9,10], and
mechanical flywheels [11–13].
Alicki and Fannes developed the first quantum advan-

tage in these devices: entangling operations over multiple
batteries can extract more work than local operations [3].
Afterward, the relevance of entanglement for battery
charging power was characterized in [7,14,15], while
implementations were proposed based on collective super-
radiant coupling in cavity and waveguide QED setups
[16–20]. Speed-ups due to many-body interactions were
explored in [9,21–24] and theoretical bounds derived in
[10]. Charging processes that exploit (or suffer from)
dissipation [25–29], stabilization mechanisms [30–34],
and the impact of energy fluctuations [35–40] have also
been investigated.
Here, we explore the quantum advantage in charging a

single battery, which arises from the quantum nature of
the charging protocol. Any charging process involves
auxiliary systems that provide the charge: a thermal engine
[11,41,42], an external time-dependent field [4,7,15], a
quantized light field [16–20], or more generally an out-of-
equilibrium system [8]. We describe the charging process
using a collision model [42–46], see Fig. 1. Collision
models have proven useful to the understanding of equili-
bration and nonequilibrium dynamics [43–45,47,48], the
impact of quantum coherence in thermodynamics [49,50],
as well as strong coupling thermodynamics [51].

We find that energy coherences in the charging units
generate interference effects in the battery. This leads to a
fast spread of the battery’s energy distribution, whose
variance increases quadratically in time (instead of linear
increase with classical units). The behavior is reminiscent of
quantum random walks [52–54], which play a crucial role in
the speed-up of quantum algorithms [55–57]. Specifically,
we find that coherently prepared units can lead to faster
charging than their classical counterparts for batteries
prepared in the ground state. Notably, when charging power
becomes the figure of merit, quantum protocols can over-
come arbitrary classical ones. Finally, we study the effi-
ciency of these charging processes, by comparing the
ergotropy [58] in the battery with that of the charging units.
Model.—We consider a quantum battery with N þ 1

levels, Hamiltonian ĤB ¼ E
P

N
0 njnihnj, and lowering

FIG. 1. Sketch of the collisional battery charging protocol. The
battery is modeled as a uniform energy ladder with N þ 1 levels
in steps of E. Its quantum state ρB receives energy “charge” from
a stream of identical qubits prepared in the state ρQ, via the
resonant exchange interaction V̂ applied for a time τ.
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operator Â ¼ P
N
1 jn − 1ihnj [41,59]. The battery is

charged by interacting with a sequence of resonant qubits
with ground and excited states jgi; jei, and bare
Hamiltonian ĤQ ¼ Ejeihej.
We consider the swap interaction V̂ ¼ ℏgðσ̂þÂþ σ̂−Â

†Þ
acting for a time τ at each charging step, which generates a
thermal operation, ½V̂; ĤB þ ĤQ� ¼ 0 [60,61], character-
ized by a single parameter θ ¼ gτ. The battery-qubit
coupling thus does not require external work [62]. An
arbitrary qubit state,

ρQ ¼ qjgihgj þ ð1 − qÞjeihej
þ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qð1 − qÞ

p
ðeiαjeihgj þ H:c:Þ; ð1Þ

with q ∈ ½0; 1� the ground-state occupation, α ∈ ½0; 2π� the
phase, and c ∈ ½0; 1� the degree of coherence contains an
average energy Eð1 − qÞ, which is partly transferred to the
battery via V̂.
The transformation of the battery state ρB → ρ0B after one

charge step can be expressed via a Lindblad generator,
ΔρB ¼ ρ0B − ρB ¼ LρB. For a given q, we distinguish the
two opposing cases of incoherent charging via diagonal
qubit states (c ¼ 0) and coherent charging via pure super-
position states (c ¼ 1). In the rotating frame with respect to
ĤB þ ĤQ, we get for c ¼ 0 the generator

LincρB ¼ sin2θfqD½Â�ρB þ ð1 − qÞD½Â†�ρBg
þ ð1 − cos θÞ2ðqD½j0ih0j�ρB
þ ð1 − qÞD½jNihNj�ρBÞ; ð2Þ

where D½B̂�ρ¼ B̂ρB̂†−fB̂†B̂;ρg=2. The first line describes
jumps up and down the energy ladder, conditioned on the
qubit’s ground (q) and excitation probabilities (1 − q). This
constitutes a random walk with an overall jump probability
pθ ¼ sin2 θ and leads to an average energy change per
charge step of

trfĤBLincρBg ¼ vEþ pθE½qh0jρBj0i − ð1 − qÞhNjρBjNi�:
ð3Þ

Here, v ¼ pθð1 − 2qÞ denotes the (classical) dimensionless
drift across the battery. Average energy growth (v > 0)
requires population inversion, q < 1=2. For a finite battery,
the jumps are terminated at the boundaries and comple-
mented by dephasing of the boundary states, as described in
the second line of (2): if no jump occurs, a ground-state
(excited) qubit would learn that the battery is empty (full).
The dephasing would destroy any initial energy coherence.

For c ¼ 1, we get

LcohρB¼−i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qð1−qÞ

p
sinθcosθ½Âe−iαþ Â†eiα;ρB�

þD½ ffiffiffi
q

p
sinθÂþ ieiα

ffiffiffiffiffiffiffiffiffiffi
1−q

p
ð1−cosθÞjNihNj�ρB

þD½
ffiffiffiffiffiffiffiffiffiffi
1−q

p
sinθÂ†þ ie−iα

ffiffiffi
q

p ð1−cosθÞj0ih0j�ρB:
ð4Þ

The coherent generator (4) contains all incoherent terms
with additional cross terms and an effective coherent
driving Hamiltonian (first line). This driving term can
generate interference effects in the case of strictly partial
swaps (sin 2θ ≠ 0). We identify the effective Rabi
parameter

Ω ≔ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qð1 − qÞ

p
sin θ cos θ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qð1 − qÞ

p
sin 2θ; ð5Þ

which quantifies the coherent speedup of battery charging.
Other c values would result in a mixture of the two
generators, LρB ¼ cLcohρB þ ð1 − cÞLincρB.
Incoherent charging.—We first consider a classical

charging protocol (c ¼ 0). From (2), the battery state then
remains diagonal, fully characterized by the populations
Pðn; kÞ ¼ hnjρBðkÞjni after interaction with the kth qubit.
In the regime where the battery does not populate the
boundary states j0i and jNi, we obtain a discrete three-
branch random walk with an update rule

Pðn; kþ 1Þ ¼ ð1 − pθÞPðn; kÞ þ pθð1 − qÞPðn − 1; kÞ
þ pθqPðnþ 1; kÞ; ð6Þ

valid for 0 < n < N. The variable for the number of
jumps up-down or no jumps after k interactions, X ¼
fXþ; X−; X0g, follows a trinomial distribution with prob-
abilities p ¼ fpθð1 − qÞ; pθq; 1 − pθg [63]. The mean and
variance of charge n (energy in units E) grow linearly in
time,

n̄ðkÞ ¼ n̄ð0Þ þ vk; Δn2ðkÞ ¼ Δn2ð0Þ þ ðpθ − v2Þk;
ð7Þ

with n̄ðkÞ ¼ P
n nPðn; kÞ and Δn2ðkÞ ¼ P

n n
2Pðn; kÞ−

n̄ðkÞ2. Taking k ≫ 1, the trinomial distribution has two
natural limits. For small jump probabilities (pθ ≪ 1)
and finite kpθ, the number of jumps up or down obey a
Poisson distribution with mean kp� [64,65]. Conversely,
for large k and moderate pθ=≈0; 1;X follows a Gaussian
distribution in accordance with the central limit theorem
[66]. The battery populations eventually converge to
Pðn;∞Þ ∝ ð1 − qÞn=qn, the fixed point of (6). It amounts
to a Gibbs state at an effective (negative) qubit temperature
defined by e−E=kBT ¼ ð1 − qÞ=q; this follows by noting
that the product Gibbs state ρQ ⊗ ρB ∝ e−ðĤQþĤBÞ=kBT is
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invariant under V̂ while population inversion (q < 1=2)
implies T < 0.
Coherent charging and quantum signatures.—Now,

instead of using classical population-inverted states to
charge the battery, consider qubits prepared in pure super-
position states with the same occupation q. They have
the same mean energy but a higher purity, which can be
interpreted as a thermodynamic resource [49,50]. Since V̂
is invariant under rotation about the z axis, we set the qubit
phase α ¼ 0 without loss of generality.
Ignoring boundary effects, one can show that a bimodal

energy distribution emerges. The two branches simulta-
neously progress down and up the energy ladder with
increasing k [66]. For an initially pure battery state jn0i and
sufficiently large k (n0 − k > 0 and n0 þ k < N), the two
branches have energy peaks at approximately

n� ≈ n0 þ ðv� cΩÞk: ð8Þ

The coherent driving thus speeds up (and slows down)
each peak by cΩ, resulting in the same mean energy
increase as in the incoherent case (7). However, the
energy variance now grows quadratically with k, Δn2ðkÞ≈
ðpθ − v2Þkþ c2Ω2kðk − 1Þ=2, which can be seen as a
genuine quantum signature.
Exemplary snapshots of the battery’s energy distribution

with k are depicted in Fig. 2(a) for coherent (red) and
incoherent charging (black). The incoherent case is well
described by Gaussians whose mean values (black-dotted
lines) move according to (7). The red-dotted lines mark the
approximate peak positions (8) for the coherent case, which
agree with the actual distribution maxima. Note that the
average energy n̄ðkÞ is the same in both cases as long as the
boundaries are not hit. Once this happens, the quantum
wave is reflected, whereas the classical distribution
approaches the inverse Gibbs state.

Quantum advantage for empty batteries.—At first sight,
the previous considerations suggest that quantum coher-
ence is detrimental for battery charging: coherent qubits
provide at most the same average energy to the battery as
incoherent ones, but with a larger variance. The situation
drastically changes when the battery is initially empty
(n0 ¼ 0). Now the charge distribution comprises only a
single forward-propagating peak, see Fig. 2(b). Even
though our analytic random-walk model no longer applies,
we verify numerically that the peak is still situated close
to nþ from (8), which climbs up the ladder at a 73% faster
rate than the incoherent Gaussian for q ¼ 0.25. Coherence
results in interference effects and directly attributes to the
speed-up by cΩ. In fact, both purity and coherence can be
seen as independent resources for this task: a higher purity
leads to a higher (classical) drift velocity v ¼ pθð1 − 2qÞ,
whereas coherence adds an additional contribution cΩ to
the velocity [see Eq. (8)].
We compare the energy growth of incoherent and coherent

protocols in Fig. 3(a) for q ¼ 0.25; and in (b) for the more
distinctive case q ¼ 0.49. Far below the fully charged state,
coherent charging is always more advantageous. However,
once the maximum charge is reached, we see a drop in
energy due to reflection at the boundary n ¼ N. The number
of coherent steps from empty to maximum battery charge is
therefore

kest ≈
�

N
cΩþ v

�
: ð9Þ

For Fig. 3, this amounts to (a) kest ≈ 292 and (b) 392,
in good agreement with the depicted maxima. Beyond
this point, the quantum protocol loses its advantage,
whereas the incoherent protocol continues to charge.
This suggests a hybrid protocol in which the battery is
charged coherently until k ≈ kest to exploit the quantum
speedup, then incoherently until the battery reaches an
inverted Gibbs state.

(a) (b)

FIG. 2. Energy distributions of a battery of size N ¼ 200
charged by k incoherent (black) and coherent (red) qubits with
q ¼ 1=4 and θ ¼ π=4. All curves are rescaled to the same
maximum. In (a), the battery is initialized in the pure, partially
charged state jn0 ¼ 50i, whereas in (b), the battery is initialized
in the zero-charge state j0i. The dotted black and red vertical lines
mark the approximate average charge according to (7) and the
approximate peak positions (8) for incoherent and coherent
qubits, respectively, for n̄ < 200.

(a) (b)

FIG. 3. Energy (solid) and ergotropy (dashed) for incoherent
(black) and coherent (red) charging of a battery of N ¼ 200 with
k qubits. Here, (a) matches Fig. 2(b) with q ¼ 0.25 and n0 ¼ 0
while (b) corresponds to q ¼ 0.49. The dotted line shows the
ergotropy associated to the dephased battery state, i.e., only the
energy populations. The vertical lines mark the theoretical kest.
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Focusing on k < kest, the quantum advantage can be
quantified by the ratio between incoherent (c ¼ 0) and
coherent (c ¼ 1) energy charging rate:

AðkÞ ¼ n̄c¼1ðkÞ − n̄c¼1ðk − 1Þ
n̄c¼0ðkÞ − n̄c¼0ðk − 1Þ : ð10Þ

Here, the subindex in n̄ðkÞ distinguishes both cases. There
is a quantum advantage ifA > 1 for some k, q, and θ. In the
regime N > k ≫ 1, we obtain an upper bound on A by
noting that the increment of n̄c¼1 is upper bounded by the
peak velocity vþ Ω, whereas the classical increment is, for
the most part, given by v,

A≲ 1þ Ω
v
¼ 1þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qð1 − qÞp

ð1 − 2qÞ tan θ : ð11Þ

It can be verified numerically that A is always above 70%
of this bound. Moreover, the quantum advantage diverges
for q → 1=2 and for θ ≪ 1. This can be understood by
noting that for q ≈ 1=2, incoherent charging vanishes while
coherent charging is still possible. For short interactions
(θ ≪ 1), the coherent driving term in (4) is first order in θ,
while the classical charging terms are of second order.
Ergotropy and charging efficiency.—Because of inevi-

table energy fluctuations, not all energy stored in the
battery is useful work. This effect is well captured by
the notion of ergotropy [1,58], which characterizes the
maximum amount of useful energy as the part that can be
extracted by means of a deterministic unitary operation.
The unitary brings the battery to a passive state [58,69,70],
given by the energy mixture πB ¼ P

N
0 rnjnihnj with frng

the eigenvalues of the initial state in descending order.
Figure 3 shows the ergotropy and average energy of the

battery. When charged by coherent qubits, the battery stores
useful energy in two ways: by populating higher energies
and building up energy coherences. We distinguish the
two by considering the residual ergotropy from a dephased
battery state in the energy basis (dotted). In fact, most
useful energy is contained in the energy profile during the
charging of an initially empty battery until it reaches
maximum charge. In the longtime limit, however, ergotropy
will approach comparatively low values almost entirely
contained in coherences: for c ¼ 1 in Figs. 3(a) and 3(b),
the ergotropy converges to 51E and 14E at k → ∞,
respectively, while the dephased-state ergotropy converges
to 1E and 0.2E.
Ergotropy provides a natural way to define the

charging efficiency without a reference temperature [66].
For k qubits, each with ergotropy EQ ¼ E½1 − 2qþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − 2qÞ2 þ 4c2qð1 − qÞ

p
�=2, we define the efficiency

as the ratio of stored ergotropy over total ergotropy
input, ηðkÞ ¼ EBðkÞ=kEQ. Note that ηðkÞ ≤ 1 for energy-
preserving interactions [37].

Figure 4 shows the (a) incoherent and (b) coherent
charging efficiency as a function of k and q. Coherent
ergotropy transfer can reach more than 80% maximum
efficiency at intermediate qubit numbers k, indicated by the
solid curve in Fig. 4(b) and compared against kest (dashed).
The efficiency drops for greater k values after reflection at
the full-charge state jNi. Incoherent charging slows down
approaching the inverted Gibbs state.
Quantum advantage in power.—The previous consid-

erations show that quantum coherence can be exploited to
enhance battery charging and its efficiency given a set of k
qubits with fixed interaction θ. However, the energy n̄ðkÞE
charged into the battery would be maximum for perfect
population inversion (q → 0), and charging efficiency
would reach ηðkÞ¼1 for full swaps (θ¼π=2). Crucially,
this best-case scenario does not require quantum coherence,
which raises the natural question: can we find a quantum
advantage against arbitrary classical protocols?
Remarkably, the answer is affirmative when charging
power is the figure of merit and time the only constraint.
Starting with an empty battery [n̄ð0Þ ¼ 0], the average

charging power of k qubits, PðkÞ¼ gEn̄ðkÞ=kθ¼En̄ðkÞ=t,
quantifies the gain in average battery energy over the
charging time t ¼ kθ=g. We shall maximize P over k and q
at fixed t. For incoherent probes, power decreases mono-
tonically with q, and the optimal strategy is hence obtained
for pure excited qubit states at q ¼ 0. A straightforward
calculation yields the fundamental upper bound for inco-
herent charging, Pmax

c¼0 ≈ 0.62gE attained at θmax ≈ 1.17.
Coherent probes can overcome this bound, see Fig. 5,

which singles out coherence (and not purity) as the relevant
thermodynamic resource causing the advantage. That is,
coherent qubits (c ≠ 0) can outperform arbitrary incoherent
strategies, including pure excited qubits (q ¼ 0).
The optimal coherent strategy involves taking q ¼ 1=2

and the limit of θ → 0 and k → ∞, which caps the velocity
of the fast-moving peak in (8) at Ωk=t → g (solid line). In
this case, the power is initially smaller, but after a transient

FIG. 4. (a) Incoherent and (b) coherent charging efficiency η for
a battery of size N ¼ 200 initialized in the zero-charge state for
different k and q. Here, we consider θ ¼ π=4 where interference
effects are the strongest. The solid line in (b) marks the number of
qubits that maximizes η for a given q value, while the dashed line
marks the estimated kest in (9).
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buildup of quantum coherence, it overcomes the incoherent
bound (circles) and hits Pmax

c¼1 ≈ 0.85gE ¼ 1.37Pmax
c¼0 at

1 ≪ k < N. In practice, one can already achieve a signifi-
cant coherent power enhancement with finite qubits (tri-
angles and squares). Importantly, the advantage remains in
terms of ergotropy. At kθ ¼ 20, the ergotropy charging
power still exceeds the classical bound, and amounts to
91% and 96% of Pc¼1ðkÞ for θmax=2 and θmax=4, respec-
tively. In the limit q ¼ 1=2 and θ → 0, the ergotropy
matches exactly the energy gain since the battery evolves
almost unitarily, building up energy in its coherences
through Âþ Â† according to (4).
Conclusions.—We proposed a collision model for quan-

tum battery charging, in which identical qubits (charging
units) transfer energy to a finite energy ladder (battery). We
compared classical to quantum charging protocols where the
units are prepared in a mixture or superposition state,
respectively. We found that quantum protocols can yield a
higher power than arbitrary classical strategies, thus provid-
ing a clear advantage at the level of a single battery. This
complements previous examples of collective quantum
speed-ups [4,5]. Our analysis also highlights a connection
between quantum thermodynamics and quantum random
walks [52–54]. The formalism behind is, however, different:
in quantum random walks a single coin becomes entangled
with the walker, whereas here interference effects in the
walker (battery) are created through partial collision proc-
esses with numerous coins (units). Future work could further
reveal the connection between both frameworks and exploit
quantum walklike features in thermodynamic protocols.
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