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There has been a growing interest in realizing quantum simulators for physical systems where perturbative
methods are ineffective. The scalability and flexibility of circuit quantum electrodynamics make it a
promising platform for implementing various types of simulators, including lattice models of strongly
coupled field theories. Here, we use a multimode superconducting parametric cavity as a hardware-efficient
analog quantum simulator, realizing a lattice in synthetic dimensions with complex hopping interactions. The
coupling graph, i.e., the realized model, can be programmed in situ. The complex-valued hopping interaction
further allows us to simulate, for instance, gauge potentials and topological models. As a demonstration, we
simulate a plaquette of the bosonic Creutz ladder. We characterize the lattice with scattering measurements,
reconstructing the experimental Hamiltonian and observing important precursors of topological features
including nonreciprocal transport and Aharonov-Bohm caging. This platform can be easily extended to larger
lattices and different models involving other interactions.
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With large-scale, error-corrected quantum computers
still years away, there has been considerable recent atten-
tion in analog quantum simulation (AQS) [1–8]. AQS is a
paradigm of quantum computation where a well-controlled
artificial system, e.g., a quantum circuit, is constructed to
have the same Hamiltonian as a system of interest [9–14].
The dynamics can then be explored by studying the
artificial system, i.e., the simulator. Like analog classical
computation in the 1960s, AQS is a promising path for
unlocking the advantages of quantum computing before
large-scale digital quantum computers become feasible.
There is a particular interest in performing quantum

simulations of systems that are classically intractable. A
broad class of such problems are strongly coupled quantum
field theories. These theories include fundamental models
such as quantum chromodynamics (QCD), but are also our
language to describe a wide array of quantum materials
such as high-temperature superconductors. Because of their
strong interactions, these theories are not amenable to the
standard tools of perturbation theory, making the develop-
ment of simulation tools critical. While very powerful
classical simulation tools exist for some of these problems
[15,16], such as lattice QCD, some important problems
remain intractable, for instance, due to the infamous sign

problem [17]. Since topological models are often affected
by the sign problem, they are natural candidates for
AQS [18,19].
In this Letter, we present an in situ programmable

platform for analog quantum simulation. As a demonstra-
tion of its potential, we use it for a small-scale simulation
of the bosonic Creutz ladder (BCL) [20–22]. The Creutz
ladder is a simple quasi-1D lattice model, but nonetheless,
exhibits a wide range of interesting behavior including
topological and chiral states. It is historically important as
one of the first models of chiral lattice fermions [20,23].
The platform we use for AQS is a multimode super-

conducting parametric cavity. The device has several
resonant modes that share a common boundary condition,
which is imposed by a superconducting quantum interfer-
ence device (SQUID). By modulating the shared boundary
in time, we induce parametric couplings between modes,
including standard “hopping” terms [24–26]. By selecting a
set of modulation frequencies, we can create a program-
mable graph of connections between the modes, which
then become the nodes of our lattice arrayed in synthetic
dimensions. Because the couplings are created by coherent
pump tones, we can control not only the magnitudes of the
hopping terms, but also their relative phases. This phase
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control allows us to implement models with complex
hopping terms, describing classical gauge fields and a
variety of topological systems. We further reconstruct
the realized Hamiltonian through detailed scattering mea-
surements. We note a recent work that looked at AQS
in a parametric cavity, but with a pumping scheme that
lacked the addressability and phase control demonstrated
here [27].
The Hamiltonian of the infinite Creutz ladder, illustrated

in Fig. 1(a), is (ℏ ¼ 1)

ĤC ¼ −
X

n

�
tdðb̂†nânþ1 þ â†nb̂nþ1Þ þ

tv
2
ðb̂†nân þ â†nþ1b̂nþ1Þ

þ thei
ϕ
2ðâ†nþ1ân þ b̂†nb̂nþ1Þ

�
þ H:c:; ð1Þ

where td, tv, th are the diagonal, vertical, and horizontal
coupling rates and ϕ=2 is the phase of the horizontal
coupling. This Hamiltonian describes the dynamics of a
crossed-link fermionic ladder in a magnetic field [20].
There are a number of interesting topological features of the
model. As elaborated in our previous work [21], at ϕ ¼ π,
the Hamiltonian is time-reversal, particle-hole, and chiral
symmetric. Moreover, in the so-called strong coupling limit
of tv ¼ 0 and td ¼ th ¼ 1 and with open boundary con-
ditions (finite chain), there are two chiral zero-energy
modes localized at the two ends of the ladder. Here, we
study the simplest building block one can use to investigate
the chiral properties of the Creutz ladder.
We can program the bosonic version of ĤC into our

parametric cavity with the appropriate choice of pump

frequencies. For ease of notation, we will now drop the
fân; b̂ng notation of Eq. (1) and simplify to fâng with the
connectivity of the lattice now encoded in a coupling
tensor gnm.
To probe the system, we must couple it to our meas-

urement line, which we model with the coupling
Hamiltonian

ĤP ¼ i
X

n

ffiffiffiffiffiffiffi
κextn

p
ðâi;n − â†i;nÞðân þ â†nÞ; ð2Þ

with âi;n describing the annihilation operator of the nth
input mode with the external coupling rate κextn . To treat the
dynamics of our driven, dissipative system, we use the
following Lindblad master equation [28,29]:

_̂ρ ¼ −i½ĤC þ ĤP; ρ̂� þ
X

n

κn

�
ânρ̂â

†
n −

1

2
fâ†nân; ρ̂g

�
;

where ρ̂ is the reduced density matrix of the plaquette and
κn ¼ κextn þ κintn is the total photon decay rate including the
internal loss rate κintn [30].
The Heisenberg-Langevin equations of motion for the

mode operators follow directly as:

_̂an ¼ i

�
Δn þ i

κn
2

�
ân þ i

X

m≠n

gnm
2

âm þ
ffiffiffiffiffiffiffi
κextn

p
âi;n; ð3Þ

where Δn ¼ ωs
n − ωn with ωs

n being the probe frequency
of the nth mode. Using the input-output formalism, the
output modes which we detect are then defined as
âo;n ¼

ffiffiffiffiffiffiffi
κextn

p
ân − âi;n. Finally, to find the scattering matrix,

we solve for the steady-state solutions of Eq. (3), i.e.,
assuming _̂an ¼ 0, and define Snm ¼ hâo;ni=hâi;mi. We note
that the same scattering equations can be derived from an
effective non-Hermitian Hamiltonian [26,31].
The parametric cavity is a quarter wavelength coplanar

waveguide resonator terminated by a SQUID at one end
and capacitively overcoupled (Q ≈ 7000) to a 50 Ω trans-
mission line at the other end [24,25,36–38]. The funda-
mental mode of the cavity is designed to be around 1 GHz,
which results in five accessible modes within our meas-
urement bandwidth of 4–12 GHz. We use impedance
engineering to make the mode spacing nondegenerate.
This enables frequency selective activation of parametric
interactions between specific modes, strongly suppressing
stray interactions that would, otherwise, arise from acci-
dental degeneracies [24,39]. We can activate a variety of
parametric processes by modulating the boundary condi-
tion of the cavity using a microwave pump, which is
coupled to the SQUID [24–26]. For this work, the hopping
terms are activated by pumping at the difference of two
mode frequencies.

Probe
Pump

(a)

(b) (c)

FIG. 1. (a) Schematic representation of the Creutz ladder. The
arrows indicate the sign of the hopping phase. (b) Device cartoon.
We realize interactions between cavity modes by parametrically
pumping the SQUID through a flux line. The system is then
probed through the input capacitor by a coherent tone. (c) Syn-
thetic lattice. We program a four-node lattice in synthetic
dimensions using four pump tones, which have a well-controlled
phase. We measure the scattering matrix of the system by probing
near each node frequency and measuring the output at various
nodes, which are separated in frequency space.
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We program a four-node plaquette by pumping the
SQUID with four coherent tones at the appropriate differ-
ence frequencies, ωp

nm, as seen in Fig. 1(c). The choice of
ωp
nm determines which gnm are nonzero, programming the

connection graph of the lattice. As described below, we can
associate this small lattice with various parts of a larger
Creutz ladder. The mode and pump frequencies are listed
in Table I, where we use the specific mode labels
n ∈ fa; b; c; dg. We generate the pump tones using micro-
wave generators phase locked with 1 GHz references,
which provides superior phase coherence.

To characterize the lattice, we use a vector network
analyzer (VNA) to probe the system through its input
capacitor. To measure the reflection coefficient, SnnðΔnÞ, of
node n, we both probe and detect around that node’s
frequency, ωn. When the lattice is activated, the single
resonance observed at each uncoupled mode frequency is
split into a number of resonances. We can interpret this set
of resonances as the spectrum of the eigenmodes that exist
on the lattice. Each element is centered on the uncoupled
mode frequency, and the frequency offset of the coupled
eigenmodes can be viewed as the energy of the mode in the
common rotating frame of the pumps. We can infer the
mode coupling strengths, the gnm of Eq. (3), as a function of
pump power from the set of spectra fSnng. For the simple
case of two coupled modes, the frequency splitting of the
eigenmodes directly gives the coupling strength. The
situation is more complicated with more than two modes,
but the basic intuition is similar.
In setting the coupling strengths for the lattice links,

we normalize the coupling strengths to the geometric
mean of the mode linewidths κm and κn, defining
βnm ¼ gnm=2

ffiffiffiffiffiffiffiffiffiffi
κmκn

p
. Here, we chose the βnm to be roughly

equal and in the strong-coupling limit. We use strong
coupling, here, to mean that the eigenmodes of the system
are resolved in frequency, as seen in Fig. 2. Since different

TABLE I. Extracted device and lattice parameters.

Mode a b c d

ωn=2π [GHz] 4.1589 6.0992 7.4726 9.4806
κn=2π [MHz] 1.0113 1.6494 2.9334 4.5804
κextn =2π [MHz] 0.43 0.9 2.29 2.89

Coupling ac ad bc bd

ωp
nm=2π [GHz] 3.3136 5.3223 1.3733 3.382

jgnmj=2π [MHz] 2.909 3.707 3.4978 5.650
βnm 0.8446 0.8612 0.7950 1.0278
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FIG. 2. The scattering matrix. The magnitude of the experimental (left) and theoretical (right) scattering matrices as a function of
lattice phase, ϕ, and frequency. The frequency axes give the detunings, Δn, from the uncoupled mode frequencies. The diagonal
reflection coefficients, fSnng, provide the spectrum of the lattice eigenmodes. The off-diagonal elements, fSmng, are the magnitude of
frequency-converting transport between the nodes. The fSmng allows us to characterize the “spatial” support of each eigenmode over the
lattice in the synthetic dimensions (see text). We see, clearly, that the transport is nonreciprocal with fSmng and fSnmg often being
complements of each other.
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lattice nodes exist along synthetic dimensions in frequency
space, measuring the off-diagonal scattering coefficients
Smn, which characterize transport between nodes, requires
a frequency-conversion measurement, where the probe
and detection frequencies are offset by ωp

nm. We can
distinguish Smn and Snm by swapping the probe and
detection frequencies, allowing us to see nonreciprocal
features in the transport.
We simulate the effect of applying an external magnetic

field to the lattice by making the fgnmg complex. The phase
of the hopping term represents the phase acquired by an
excitation moving along the link in the presence of the
magnetic field. For our simple four-node plaquette, only
the total phase around the loop matters. As such, we
choose, without loss of generality, to sweep the phase, ϕ,
of the hopping term between nodes a and c. Formally,
moving the phases between links can be seen as a gauge
transformation.
Figure 2 shows the measured 4 × 4 scattering matrix.

Each element Snm is measured as a function of ϕ and Δn.
We clearly see nontrivial behavior as ϕ is varied, with
a series of degeneracies arising and disappearing. The
off-diagonal elements fSmng show the magnitude of
frequency-converting transport from node n to node m.
The frequency differences are set by the pump frequencies,
ωp
nm (see Table I). These transport measurements allow us

to recover spatial information about the support of the
eigenmodes over the synthetic lattice. Being in the strong-
coupling limit, we can excite a specific eigenmode
at a well-defined detuning, Δn. As the eigenmodes are
“spatially" distributed along the synthetic dimensions, the
excitation hops between the nodes and eventually leaks out
of the cavity at another node, where it is then detected at
the converted frequency.
We performed detailed fitting of the data in Fig. 2. To

extract the model parameters, we fit all of the scattering
elements simultaneously at several phases [31]. In total, the
fit was done to 64 VNA traces simultaneously, so, while the
number of parameters is substantial, there is a large amount
of data to constrain the fit. Figure 2 also shows the fit
scattering matrix. Table I shows the extracted parameters.
We find that the quality of the fit is remarkable given the
complexity of the data.
We observe a number of interesting features in the

scattering matrix. First, we observe clear nonreciprocity
in the transport, for instance, noticing that Sbc and Scb are
effectively complements of each other. The definition
of reciprocity is that Sij ¼ Sji, which is clearly broken
here. We will not emphasize it here, but this can be
connected to the fictitious magnetic flux breaking time-
reversal symmetry.
We can also identify interesting eigenmodes that we

associate with emerging topological features of the Creutz
ladder [40]. At ϕ ¼ π, Creutz predicted that the bulk states
collapse in a pair of flat bands at equal but opposite

energies. A flat band implies that the bulk states are
localized, as the group velocity goes to zero. Creutz
referred to the associated states as “solitons” and identified
the localization as arising from interference between alter-
nate paths on the lattice [see Fig. 3(d)], a phenomenon often
referred to as Aharonov-Bohm caging in recent literature.
With open boundary conditions, Creutz also predicted the
existence of a pair of zero-energy states localized to the
ends of the ladder. The connection between the observed
eigenmodes and these topological states is discussed in
detail in Fig. 3.
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FIG. 3. Topological precursors. (a) ϕ ¼ 0 line cuts of the
measured (red) and theory (blue) scattering parameters in Fig. 2
when probing at node a. The vertical axes are normalized to the
background. The measurements indicate the existence of an
eigenmode at zero energy with significant support only in nodes a
and b, which are not directly connected. We infer this from the
relatively high transmission amplitude from a to b. We also
observe a second zero mode localized on sites c and d. (b) Twisted
plaquette. We expect topological features of the Creutz ladder to
appear at ϕ ¼ π and not ϕ ¼ 0. However, we note that, if we twist
the plaquette as indicated, ϕ ¼ 0 regardless of the external flux.
After twisting, the zero modes now appear at the two ends of the
plaquette. These states are reminiscent of the predicted zero-
mode end states [20]. (c) ϕ ¼ π line cuts when probing from
node a. The scales of the vertical axes are the same as panel (a).
The measurements indicate the existence of two pairs of
degenerate eigenmodes, one at positive and one at negative
detuning, that have support on all but one of the nodes. One of
these four eigenmodes exists on each corner. (d) Caging. We can
associate the corner eigenmodes with the soliton states in the
Creutz ladder by identifying the lattice as the indicated trapezoi-
dal path. Because of Aharonov-Bohm caging, an excitation at,
e.g., node a cannot propagate to node b.
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In this Letter, we have introduced a platform for
programmable analog quantum simulation of topological
lattice models. The platform is hardware efficient, creating
the lattice in synthetic dimensions within a single para-
metric cavity. We have demonstrated the potential of
the platform by performing small-scale simulations of a
paradigmatic topological model, showing that we can
reconstruct the realized Hamiltonian through scattering
measurements.
Comparing to competing platforms, such as shaking the

optical lattice of a cold-atom system [41] or modulating a
harmonic optical cavity [42], we can make the general
statement that experimental demonstrations of simulations
with complex hopping parameters have generally
employed some type of global modulation. While this
global approach offers efficiency, it also imposes limita-
tions on uniformity and simulation size, as individual
couplings cannot be tuned and, e.g., the global control
field will vary across the lattice. Further, the global
approach will generally limit the type and complexity of
phase patterns, i.e., simulated field configurations, that can
be imprinted on the lattice. Last, the accessible connectivity
graphs of these approaches is generally both limited and
not programmable. Our local approach, with individual
amplitude and phase control on every link, circumvents
these problems. The obvious trade-off is the relatively large
number of control fields required.
We can also consider the scalability of this platform. We

can increase the number of nodes in a single cavity in a
straightforward manner by increasing the physical length of
the cavity, increasing the density of the cavity modes in
frequency [27]. Achieving a frequency spacing of 100MHz
is straightforward. This would allow approximately 10
modes per 1 GHz within our 8 GHz of measurement
bandwidth. This mode spacing would still easily allow for
gnm ≈ 10–20 MHz without worrying about mode crowd-
ing. Although we have not seen any experimental indica-
tion of this yet, we do imagine that, eventually, there will be
a limit to the number of pump tones we can apply to a
single cavity. In that sense, we view this device design as a
hardware-efficient building block in a larger system con-
sisting of many of these cavities parametrically coupled to
each other [43]. Each individual cavity would then be a
sublattice stitched together into a larger lattice made of
several cavities. Devices made from hundreds of coupled
cavities on a single chip have been demonstrated [44].
Further discussion of scalability can be found in the
Supplemental Material [31].
While we have emphasized, as a demonstration, the

simulation of a quasi-1D lattice, the platform is easily
extensible to two dimensions (or higher). Essentially, the
connection graph of the simulated lattice is arbitrary and the
dimensionality of the simulation is set by the number of
nearest-neighbor connections of each node. As an example
of possible physics to explore, Ref. [45] proposed a pattern

of hopping phases that produces an effective (magnetic)
gauge field for photons in a 2D photonic lattice like ours.
The node-to-node coupling demonstrated here can be

extended in a number of promising and interesting ways.
Here, we only activated the simplest type of coupling
(hopping). Another well-characterized parametric process
is two-photon parametric down-conversion, which would
be activated by pumping at the sum of two mode frequen-
cies, adding Hamiltonian terms of the form â†i â

†
j . First, this

is interesting as it is a source of nonclassical states,
including squeezed and entangled states. We have also
shown, previously, that combining hopping and down-
conversion can create scalable, multimode entangled states
[24]. Next, down-conversion unlocks a number of interest-
ing simulation effects. For instance, the two-photon process
can mimic a pairing potential [46], as in superconductivity.
Further, combining down-conversion and hopping terms
leads directly to chiral and topological features, as in
the bosonic Kitaev-Majorona chain [46]. Finally, down-
conversion provides access to coherent non-Hermitian
Hamiltonians, in contrast to the loss-induced non-
Hermiticity widely studied in the literature [47,48].
Both hopping and two-photon down-conversion are exam-

ples of Gaussian processes. However, our group and others
have recently demonstrated a variety of higher-order non-
Gaussian processes [49,50], including three-photon sponta-
neous parametric down-conversion [25]. Beyond broadening
the type of photonic states that we can introduce into the
system, including non-Gaussian entangled states [51], these
multiphoton processes can create many-body interactions,
e.g., of the form âiâ

†
j â

†
k, that are one key route to realizing

simulations of dynamical gauge fields [19,52]. Further, it has
recently been shown that these processes can induce a strong,
tunable nonlinearity when used to couple a pair of harmonic
modes [49]. This stimulated nonlinearity is significant at the
single-photon level, providing another way that we can add
effective photon-photon interactions to the system. All of the
various effects mentioned here have been demonstrated
experimentally in parametric cavities and their incorporation
into simulations is the subject of ongoing work.
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