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Recent experiments on quantum walks (QWs) demonstrated a full control over the statistics-dependent
walks of single particles and two particles in one-dimensional lattices. However, little is known about the
general characterization of QWs at the many-body level. Here, we rigorously study QWs, Bloch
oscillations, and the quantum Fisher information for three indistinguishable bosons and fermions in
one-dimensional lattices using a time-evolving block decimation algorithm and many-body perturbation
theory. We show that such strongly correlated QWs not only give rise to statistics-and-interaction-
dependent ballistic transports of scattering states and of two- and three-body bound states but also allow a
quantum enhanced precision measurement of the gravitational force. In contrast to the QWs of the
fermions, the QWs of three bosons exhibit strongly correlated Bloch oscillations, which present a
surprising time scaling t3 of the Fisher information below a characteristic time t0 and saturate to the
fundamental limit of t2 for t > t0.
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Quantum walks (QWs) [1,2], the quantum counterpart of
the classical random walks, are characterized by a fast
ballistic spreading with wave fronts expanding linearly in
time. Owing to their nonclassical features, they have
potential applications in quantum algorithms [3], quantum
computing [4], quantum information [5,6], quantum sim-
ulation [7], and quantum biology [8]. QWs have been
experimentally implemented in a variety of quantum
systems [9] and recently found in detecting topological
states [10–12], discrete-time QWs [13–16], and bound
states of magnons [17,18].
Up to now, most previous works focused on the one- and

two-particle QWs in one-dimensional (1D) lattices.
Preliminary experiments studied the QWs of a single
particle and two particles by using either neutral atoms
[19], ions [20], photons [21], spin impurities [18,22], or
nuclear-magnetic-resonance systems [23]. Walkers of two
noninteracting particles can develop nontrivial correlations
due to the Hanbury-Brown-Twiss interference [24–30].
Bosonic (fermionic) walkers result in an emergence of
bunching (antibunching) in density-density correlations
[31–34], and anyons are in between [35,36]. Moreover,

the interplay between quantum statistics and the interaction
of two particles [33,34,37–43], and of two and three flipped
spins in a Heisenberg chain [44], leads to a richer dynamics
of quantum cowalking.
On the other hand, a quantum particle in a tilted periodic

potential may undergo Bloch oscillation (BO), which has
been demonstrated via ultracold atoms [34,45]. The BO
frequency is proportional to the tilting force. This can be
employed to measure the gravitational force [46,47], the
magnetic field gradient [48], the Zak phase in topological
Bloch bands [49], and the Casimir-Polder force [50].
Quantum Fisher information (FI), which provides a lower
limit to the Cramér-Rao bound, plays a central role in
quantum precision measurements [51–53]. However, the
question of how to create many-body entanglement to
improve measurement precision via BOs and how to use the
FI to quantify the precision limit for the gravitational force
still remains open and challenging.
In this Letter, we study the nonequilibrium dynamics of

three fermions and three bosons in 1D lattices and explore
its metrological application in the precision measurement
of gravitational force. Continuous-time QWs, strongly
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correlated BOs, the band structure, time evolutions of
density distributions, and density-density correlations for
the systems are thoroughly studied through numerical and
analytical methods. The FI of such QWs shows a promising
capability for quantum-enhanced precision measurement of
weak forces in the walks of three-boson bound states.
The model.—We consider three indistinguishable par-

ticles moving on 1D lattices governed by the following
Hamiltonian:

Ĥ ¼ −J
XM−1

j¼−M
ða†jajþ1 þ H:c:Þ þ V

XM−1

j¼−M
n̂jn̂jþ1: ð1Þ

Here, a†j (aj) creates (annihilates) a particle at the jth site,
and n̂j ¼ a†jaj is the particle number operator. The total
number of lattice sites L ¼ 2M. J is the nearest-neighbor
hopping and sets the unit of energy (J ¼ 1). V is the
nearest-neighbor interaction. Hamiltonians like Eq. (1) can
be realized with ultracold atoms [34,54,55]. Here, we study
two types of particles: bosons and fermions. The fermionic
model is equivalent to the exactly solvable XXZ

Heisenberg chain [56–58], which is also equivalent to
the hard-core bosonic model [59]. The QWof two and three
particles of the XXZ model was found in [44], and an
experimental realization via ultracold two-level atoms in
deep optical lattices was given in [33,48,60].
Spectra and quantum walks.—Within the three-particle

Hilbert space, we first perform exact diagonalization (ED)
of the systems in momentum space. Figure 1 shows the
spectra of three fermions and bosons, respectively. We
observe that the three-particle systems of bosons and
fermions host scattering states (SSs), two-body bound
states (2BSs), and three-body bound states (3BSs). In
the weak interaction region, the spectra only contain one
continuum band corresponding to SSs for the three bosons
and three fermions. However, as the attraction increases,
the spectra behave in a rather statistics-dependent manner;
see Figs. 1(a), 1(b), 1(d), 1(e). For the bosonic system, the
bound states (BSs) split from the continuum band when the
interaction V becomes stronger. The whole spectra contain
three isolated spectra with gaps in between. Three mini-
bands of the 3BSs, which are energetically lower than those
of the 2BSs [blue part in Figs. 1(b), 1(e)], remarkably form
competitive QWs in time evolution. The SS band is
continuous with highest energies. In contrast, for the
fermionic system, there is only one continuum SS band
as long as the interaction jVj < 1. Bands of the SSs, 2BSs,
and 3BSs are energetically separated for large attractions.
The 3BSs only constitute one miniband with the lowest
energy, which becomes more and more flat when the
attraction increases.
Now we employ a time-evolving block decimation

algorithm [40,61] to numerically simulate the three-particle
continuous-time QWs. The QWs are governed by the
unitary time evolution jψðtÞi ¼ e−iHtjψðt ¼ 0Þi, in con-
trast to the discrete-time QWs, which obey a successive
single-time evolution governed by “shift” and “coin”
operators [13–16]. Here, we set the initial state jψðt ¼
0Þi ¼ a†−1a

†
0a

†
1j0i with three particles at the three central

neighboring sites. Open boundary conditions are used
under the cumulative truncation errors in the order of
10−8. We study the time evolutions of density distribution
njðtÞ ¼ hψðtÞja†jajjψðtÞi and density-density correlation
function Ci;jðtÞ ¼ hψðtÞjn̂in̂jjψðtÞi, which preserve the
symmetries njðtÞjV ¼ njðtÞj−V and Ci;jðtÞjV ¼ Ci;jðtÞj−V
[62,63]. We thus only consider the attractive interaction in
our study.
In Fig. 2, we show the time evolutions of density

distribution for three-particle QWs. Both the weakly
interacting bosons and fermionic systems with jVj < 1
have the same form of evolution, i.e., a single ballistic
expansion light cone is established because of the single
continuum band of the SSs. For the fermionic system with
the interaction jVj > 1, an inner cone emerges with a
slower and linearly moving wave front, indicating the

(c)

(f)

FIG. 1. The spectra of three fermions (a),(b) and three bosons
(d),(e) for L ¼ 61 and different values of interaction strength.
Each point represents an eigenenergy E for a given total
momentum K, and the red and blue dots correspond to the
energies of three- and two-body bound states, respectively. (c)
and (f) show the spectra of the 3BSs of fermions and bosons,
respectively. The solid lines denote the perturbation results of
Eqs. (2) and (3), which agree well with the ED calculation
(symbols). All spectra in either (c) or (f) are shifted by a constant.
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formation of BSs. Continuing to increase the interaction,
the third innermost cone forms. From outer to inner, three
cones correspond to ballistic expansions of the SSs, 2BSs,
and 3BSs, respectively; see Fig. 2(c). As jVj is further
increased, the cones of the SSs and 2BSs gradually fade
away and only the light cone of the 3BSs remains. The
speed of wave front (SWF) of the SSs is independent of
interaction, i.e., it is always 2, showing a maximal group
velocity (MGV) of noninteracting particles. However, the
SWFs for 2BSs and 3BSs decrease when the interaction jVj
increases. Note that the results of Figs. 2(a)–2(d) for
fermions nicely match the corresponding analytic results
for the equivalent XXZ Heisenberg model [44].
For the bosonic system, besides the outer cone for the

SSs, an inner cone for the BSs emerges as long as V is
nonzero. When the interaction increases, the SWF of this
inner cone first decreases and then stops decreasing at a
fixed value due to the band structure of the 3BSs. Then the
third innermost cone shows up. Its SWF first decreases and
then increases to a finite value; see Figs. 2(f)–2(h) and
Fig. S9 in [63]. This unique behavior of the innermost cone
is caused by the interplay of the 2BS and the 3BS. For a
large enough attraction, the evolution contains only two
cones, which are both related to the three minibands of
the 3BSs.
Moreover, the density-density correlation function

Ci;jðtÞ also provides an important statistical nature of the

three-particle QWs [63]. It significantly marks the differ-
ence between cowalking and individual walking. The
cowalking particles bind together and move as a single
composite particle, revealing the togetherness of quasipar-
ticles. The density-density correlations for cowalking show
few lines (5 lines) at (i ¼ j� d) with d ¼ 1, 2 in the (i, j)
plane, a signature of the cowalking. In Fig. 3, we show
Ci;jðtÞ for both the fermionic and bosonic systems at time
t ¼ 22 (they are free from the boundary effects). For a small
jVj, the correlation function shows (anti-)bunching behav-
ior with (off-)diagonal correlations at the wave front in the
(fermionic) bosonic system. As jVj increases, bunching and
antibunching correlations fade away, and correlations on
four minor diagonal lines (i ¼ j� 1, 2) are gradually
enhanced with respect to a statistics-dependent pace; see
the subsets in Fig. 3. In contrast to the cowalking of two
bosons [33], the cowalking of three bosons remarkably
shows expansive wave fronts due to the existence of the
minibands of the 3BSs.
Many-body perturbation and Bloch oscillations.—Under

a strong attraction, one can treat the hopping as a
perturbation to the interaction term in the Eq. (1)
Hamiltonian; see [57]. After projecting onto the subspace
of the 3BSs, an effective single-particle model can be
derived explicitly. For the fermionic case, by using the third
order perturbation, an effective single-particle Hamiltonian
for the cowalking of three fermions is given by [63]

ĤF
eff ¼ −

J3

V2

X
j

ðc†jcjþ1 þ H:c:Þ; ð2Þ

where c†j ¼ a†j−1a
†
ja

†
jþ1. The spectrum of this single-

particle Hamiltonian reads EF
effðKÞ ¼ −ð2J3=V2Þ cosðKÞ

FIG. 2. Time evolutions of density distribution for three
fermion (a)–(d) and three boson (e)–(h) systems with L ¼ 101
and different values of attractions; see text. Results (a)–(d) match
the analytic results for the XXZ Heisenberg model [44].

FIG. 3. Density-density correlation functions Ci;j for both the
fermionic (upper panel) and bosonic (lower panel) systems with a
size L ¼ 101 at the time t ¼ 22. Corresponding profiles Ci¼0;j

around j ¼ 0 are shown in subsets.
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with a MGV vF ¼ 2J3=V2; see [64]. In Fig. 1(c), we show
the spectrum of the 3BSs for the fermionic system, where
the dots denote the numerical result obtained from ED, and
the lines are obtained from the effective single-particle
Hamiltonian [Eq. (2)]. Both results agree well as jVj
increases. The MGV vF is also in a good agreement with
the SWF of the 3BSs [63]. We observe from Eq. (2) that the
ballistic expansion of three-fermion cowalking becomes
very slow as jVj increases.
The subspace of three-boson cowalking has 3L-fold

degeneracies. The first order perturbation gives an effective
single-particle Hamiltonian [63]:

ĤB
eff ¼ −

ffiffiffi
2

p
J
X
j

ðd†jbj þ c†jbj þ
ffiffiffi
2

p
d†jþ1cj þ H:c:Þ ð3Þ

with three species: b†j ¼ a†j−1a
†
ja

†
jþ1, c†j ¼ ð1= ffiffiffi

2
p Þ

ða†jÞ2a†jþ1, and d†j ¼ ð1= ffiffiffi
2

p Þa†j−1ða†jÞ2. Obviously, the
single-particle Hamiltonian (3) is independent of V. In
the momentum space, we can get the spectra of the effective
Hamiltonian [Eq. (3)], which are shown in Fig. 1(f) (solid
lines) and agree well with the ED numerical results (dotted
lines). The 3BSs have three minibands that show two
different MGVs: vB1 ≃ 1 for the middle miniband and vB2 ≃
0.64 for the other two minibands in Fig. 1(f) (solid lines).
vB
1ð2Þ agrees well with the SWF of the outer (inner) cone

when jVj ≫ 1; see [63].
In order to achieve a metrological application of QWs,

we add a static force to the Eq. (1) Hamiltonian:

ĤForce ¼ F
X
j

ja†jaj ð4Þ

with F the strength of the applied force and consider the
BOs from the same initial state jψðt ¼ 0Þi ¼ a†−1a

†
0a

†
1j0i.

We illustrate the BOs for fermionic systems in the left
panel of Fig. 4. For a weak interaction, i.e., jVj < 1,
particles independently undergo a single-particle BO with
the amplitude 4J=F and the temporal period tB ¼ 2π=F
(frequency ωB ¼ F) [65,66]. When jVj > 1, two inner BOs
appear successively with smaller amplitudes and shorter
periods. From outer to inner, there are BOs for the SSs,
2BSs, and 3BSs, respectively. Upon further increasing the
attraction, the two outer BOs gradually fade away and only
the BO of the 3BSs remains; see [63]. In order to analyze
the periodicity, we introduce a density difference
OðtÞ ¼ P

j jnjðtÞ − njðt ¼ 0Þj=L. From the Fourier trans-
formation OðωÞ, we observe the characteristics periodic-
ities of tB=2 and tB=3 (or frequencies 2ωB and 3ωB) BOs
for the 2BSs and 3BSs, respectively, which are called
fractional BOs in interacting systems [67–69]. OðωÞ
presents the relative weights of BO modes with different
frequencies. In the strong coupling limit, i.e., jVj ≫ 1, the
co-BO of the 3BSs of fermions can be described by the
effective single-particle Hamiltonian ĤF

BO ¼ ĤF
eff þ

3F
P

j jc
†
jcj with the BO amplitude 4J3=ð3V2FÞ, which

is inversely proportional to V2. Here, the effective force is
3F, which leads to the periodicity of co-BO tB=3, as well as
the frequency of 3ωB.
Because of the quantum statistical difference, the

ground-state degeneracies are different for bosons and
fermions, leading to different many-body perturbation
processes as well as different dynamics of the BOs; see
Fig. 4. The corresponding effective single-particle
Hamiltonian describing the BOs among three minibands
under an effective force 3F is given by

ĤB
BO¼ĤB

effþ3F
X
j

�
jb†jbjþ

�
jþ1

3

�
c†jcjþ

�
j−

1

3

�
d†jdj

�
;

ð5Þ

FIG. 4. Left (a)–(c) and right (d)–(f) panels show the time evolutions of density distributions for three bosons and three fermions with
L ¼ 101 and F ¼ 0.1, respectively. Multiple fractional Bloch oscillations are observed. The corresponding frequencies are shown in the
bottom row.
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see [63]. We observe that the Landau-Zener tunnelings
display between two nearby minibands [70,71]. The
amplitude of co-BO ∝ J=3F is independent of V, showing
a larger FI than that of the cowalking of three fermions in
the next section. Consequently, the periodicity of the co-
BO of three bosons is tB=3 and the frequency is 3ωB, which
provides an ideal metrological state for a precision meas-
urement of a weak force.
Fisher information and precision measurement.—The

three-boson QWs have a very rich dynamical structure of
the co-BOs that leads to an almost interaction-independent
co-BO amplitude and high value of FI in the probe of the
weak force; see [63]. Here, the FI for (co-)BOs presents the
precision limit for the single parameter F. By definition of
FI for a unitary process from a pure initial state [53,72,73],
we can calculate the FI of single-particle and multiparticle
(co-)BOs [63]:

F ¼ 4

�� ∂
∂F hψðtÞj

� ∂
∂F jψðtÞi − jhψðtÞj ∂

∂F jψðtÞij2
�
;

¼ 4t2ΔHQðtÞ; ð6Þ

where ΔHQðtÞ is the fluctuation of a time-dependent
effective Hamiltonian HQðtÞ over the initial state jψ0i:

ΔHQðtÞ ¼ hψ0j½HQðtÞ�2jψ0i − hψ0jHQðtÞjψ0i2;
HQðtÞ ¼ h½it · adHBO

�ð∂FHBOÞ ð7Þ

with operator function h½x� ¼ ðex − 1Þ=x and adjoint oper-
ator adGðCÞ ¼ ½G;C�. In Fig. 5, we show the FI as
functions of time for the (co)-BOs. Here we denoted
single-particle (S), two-boson (2B), two-fermion (2F),
three-fermion (3F), and three-boson (3B) (co-)BOs, respec-
tively. We demonstrate that below a characteristic time
t0 ≈ 0.5tB, the time scalings of the FI show a surprising
power-law form F ≃ αt3, where α is a state-dependent

constant [74]; also see [63]. In contrast to the smallest FI of
the three-fermion co-BO with α ≈ 0.024, the three-boson
co-BO has the FI with the largest value of α ≈ 1185.485
and then the smallest uncertainty in the measurement of
force. The single-particle BO has the second largest FI. For
t > t0, the FI for these walk states saturates to the standard
quantum limit F ≃ 4At2 with case-dependent constant
coefficients A.
Conclusions and discussions.—We have studied con-

tinuous-time QWs, BOs, and the FI of three bosons and
three fermions in 1D lattices, which reveals the intrinsic and
extrinsic roles of quantum statistics, interaction, and the
gravitational force in the quantum random walks. We have
demonstrated that the metrological useful entanglement for
high precision measurements of weak forces can be
generated under the time evolutions of suitable quantum
states. Our method also holds promise for a quantum-
enhanced precision test of the equivalence principle (EP)
through the QWs of three bosons.
The superiority of three-boson co-BO in precision

measurement of weak force would provide a potential
approach to test the Einstein EP. Instead of making a
comparison to the BOs of noninteracting isotopes [47], one
may test the EP through the BOs of the same species of
three interacting bosons; see the discussion in [63].
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