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We present an experimental study of a two component Fermi gas following an interaction quench into
the superfluid phase. Starting with a weakly attractive gas in the normal phase, interactions are ramped to
unitarity at a range of rates and we measure the subsequent dynamics as the gas approaches equilibrium.
Both the formation and condensation of fermion pairs are mapped via measurements of the pair momentum
distribution and can take place on very different timescales, depending on the adiabaticity of the quench.
The contact parameter is seen to respond very quickly to changes in the interaction strength, indicating that
short-range correlations, based on the occupation of high-momentum modes, evolve far more rapidly than
the correlations in low-momentum modes necessary for pair condensation.
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Quantum systems far from thermal equilibrium can
display features and behaviors that are not captured by
equilibrium models [1,2]. Examples such as optically
induced superconductivity [3] highlight the potential for
exploiting dynamical phenomena in materials driven out of
equilibrium. Atomic quantum gases offer unique advan-
tages for building a quantitative understanding of such
phenomena [4] where the timescales for dynamics are
typically much longer than comparable scales in solids.
Additionally, many of the relevant parameters can be easily
tuned allowing access to behaviors that can be difficult to
study in other settings [5,6].
Since the first observation of atomic gas Bose-Einstein

condensates (BECs), condensate formation dynamics have
attracted strong interest [7–10]. Quenches have enabled
studies of features beyond Bogoliubov theory [11,12],
vortex formation [13], the contact parameter [14–16],
and universal dynamics [17–19]. In Bose gases, however,
quenches to the strongly interacting regime are accompa-
nied by rapid inelastic losses via three-body collisions
[20,21] meaning experiments are typically limited to short
timescales. Two-component Fermi gases, on the other
hand, are virtually immune to three-body losses [22]
allowing access to dynamics across a broad range of
timescales. An early study using modulated interactions
identified the timescale for growth of a strongly interacting
Fermi condensate [23]. Vortex formation following a rapid
final evaporation across the superfluid transition was
recently investigated and seen to display Kibble-Zurek
scaling [24,25]. Temperature quenches, however, are lim-
ited to rates of the order a few Hz such that the short-time
dynamics upon crossing the phase transition have been
inaccessible in previous studies. Faster quenches may be
achieved by jumping the interaction strength, for example,
by driving radio-frequency transitions, and was recently

used to observe the Higgs amplitude mode through the
BEC-BCS crossover [26] and condensate oscillations [27].
In this Letter, we study the dynamics of a two-compo-

nent Fermi gas following a quench from weak to unitarity-
limited interactions. We observe that correlations evolve at
vastly different rates, depending on the corresponding
length scale. The quench involves crossing the normal to
superfluid phase transition and we measure the pair
momentum distribution to track the formation of a pair
condensate. Pairing is seen to take place on short time-
scales, governed by local properties of the gas, whereas
condensation and equilibration of the momentum distribu-
tion can take much longer, depending on the adiabaticity of
the quench. Using a combination of Tan relations [28,29]
we show that the contact parameter, that quantifies short-
range pair correlations, builds up very rapidly compared to
other processes involving larger length scales.
Our experiments are performed with a cloud of 6Li atoms

prepared in an equal mixture of the jF ¼ 1=2; mF ¼ 1=2i
and jF ¼ 3=2; mF ¼ −3=2i hyperfine states. This mixture
features a broad Feshbach resonance at 689.7 G enabling
precise control of the s-wave collisions [30]. The atoms are
confined in an oblate harmonic potential produced by a
combination of optical and magnetic fields. A blue-detuned
TEM01 mode laser beam (with a separation of 49 μm
between antinodes and a horizontal 1=e2 radius of 1.1 mm)
provides confinement along z with ωz ¼ 2π × 328ð1Þ Hz
[31–33]. Radial confinement arises from a residual curva-
ture in the magnetic field produced by the Feshbach coils,
leading to a highly harmonic radial potential with
ωr ¼ ffiffiffiffiffiffiffiffiffiffiffi

ωxωy
p ≈ 2π × 22 Hz, where the asymmetry in the

trapping potential is jωx − ωyj=ωr ≲ 0.01. Note that ωr ∝ffiffiffiffi
B

p
so the radial confinement also changes when we tune

interactions. After evaporative cooling at a magnetic field
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of 690 G, where the s-wave scattering length diverges,
a → ∞, the magnetic field is ramped linearly to 800 G in
200 ms, where a ≈ −3700a0 and a0 is the Bohr radius [30],
and held for a further 100 ms to ensure the cloud has
reached equilibrium. At this point, we observe no dynamics
and the interaction parameter is 1=ðkHOF aÞ ¼ −1.89� 0.07,
where kHOF is the Fermi wave vector given by the Fermi
energy in a harmonic trap is EHO

F ¼ ðℏkHOF Þ2=ð2mÞ ¼
ð3NÞ1=3ℏω̄, m is the mass of a lithium atom, N is the
total number of atoms, and ω̄ ¼ ðωxωyωzÞ1=3 is the geo-
metric mean confinement frequency. This lies in the BCS
regime where the gas has a similar density distribution to
that of an ideal Fermi gas, with perturbative corrections to
the energy [34,35]. As such we can estimate the temper-
ature T=THO

F , where THO
F ¼ EHO

F =kB and kB is Boltzmann’s
constant, by fitting the equation of state for an ideal Fermi
gas to the measured 2D in situ density profile. This yields
T=THO

F ¼ 0.06� 0.01 and the interactions reduce the
Fermi radius by ∼4% compared to an ideal gas [35].
This temperature is well above the superfluid transition
temperature ≈0.02TF for this interaction strength [36] and
we do not observe any evidence for pair condensation prior
to the quench.
After preparing clouds at the 1=ðkHOF aÞ ¼ −1.89 we

commence the sequence shown in Fig. 1(a). The magnetic
field is ramped linearly to unitarity (690 G) in a time, tq,
and the cloud is held for a variable time, th, before being
imaged. Images of the clouds are taken either in situ or,
following a rapid ramp of the interactions and subsequent
time of flight expansion [37]. In situ images reveal little of
the underlying dynamics, showing only a small amplitude
density oscillation for quenches with tq ≲ 2π=ωr, corre-
sponding to the radial monopole mode (a breathing
oscillation of the cloud radius in the x-y plane) with a
frequency of

ffiffiffi
3

p
ωr=ð2πÞ ≈ 38 Hz [38]. Internal dynamics,

including pairing and pair condensation, are nonetheless
taking place, but at unitarity, these are virtually undetect-
able in images of trapped gases. To measure the pair
momentum distribution, we suddenly remove the optical
(z) confinement and jump the magnetic field far to the BEC
side of the Feshbach resonance, in less than 100 μs, which
converts weakly bound pairs to tightly bound molecules
that preserve their center-of-mass momentum. The resultant
cloud of weakly interacting molecules is then allowed to
expand along z before the field is ramped back to 690 G in
1.5 ms to dissociate the molecules and an absorption image
is acquired. The total time from release to imaging
corresponds to one-quarter of the radial trapping period,
tTOF ¼ tr=4 ≈ 12 ms where tr ¼ 2π=ωr, in the residual
magnetic confinement, such that the spatial distribution
reflects the pair momentum distribution prior to release
[39]. Figures 1(b) and 1(c) show examples of the in situ and
expanded density distributions, respectively, following
identical quenches and a hold time of th ¼ 30 ms.

The rapid ramp and time-of-flight (TOF) image (c) shows
the characteristic bimodal distribution of a pair condensate
which is not evident in the image of the trapped cloud (b).
Following a nonadiabatic quench, the kinetic, interac-

tion, and potential energies are unbalanced, which drives
both microscopic and macroscopic dynamics as the cloud
evolves towards a new equilibrium. Figure 1(d) shows
a selection of 1D density profiles, n1D;TOFðxÞ ¼R
nTOFðx; y; zÞdydz, where nTOFðx; y; zÞ is the atom density

after the rapid ramp and time-of-flight expansion, following
a tq ¼ 50 μs quench. Each profile is the average of 3
images taken under the same conditions and provides a
representation of the 1D momentum distribution of the
pairs. Also shown are Gaussian fits (fine dotted lines) to
these distributions which exclude points between the
dashed lines. Immediately following the quench,
th ¼ 50 μs, dark purple points in Fig. 1(d), the full cloud
is very well described by a Gaussian and is essentially
unchanged from its distribution before the quench. For
longer hold times, a Gaussian still provides a good fit in the
wings but a progressively sharper central peak is seen to
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FIG. 1. (a) Experimental protocol for the quench experiments.
A cloud is initially prepared in the weakly interacting BCS
regime, with 1=ðkHOF aÞ ≈ −1.9, the magnetic field is then ramped
to unitarity in a time, tq, and held for th before commencing the
imaging sequence. (b) and (c) Absorption images of the cloud
after tq ¼ 50 μs and th ¼ 30 ms, where (b) is an in situ image of
the trapped cloud and (c) is an absorption image taken after a
rapid ramp of the magnetic field deep into the BEC regime, and
subsequent time-of-flight expansion, which reveals the presence
of a condensate in the pair-momentum distribution [37]. (d) One-
dimensional optical density profiles n1D;TOFðxÞ following a 50 μs
quench for a selection of profiles are shown at different hold
times, th. Fine dotted lines show Gaussian fits to the wings of the
distributions and the shaded regions indicate the non-Gaussian
component NnG. The fitting region excludes data between the
dashed vertical lines.
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develop (shaded regions). We associate the appearance of
this peak with the formation of pairs in modes with low
center-of-mass momentum. The peak is initially small but
grows rapidly and becomes sharper with increasing hold
times. By th ≳ 50 ms this non-Gaussian component takes
the shape of an inverted parabola as seen for Fermi
condensates at equilibrium [37]. Beyond ∼ 100 ms hold
time, the observed distributions remain stable within our
resolution, indicating that the cloud has fully equilibrated.
We have conducted a series of quench experiments and

measured the 1D pair momentum distributions, n1D;TOFðxÞ,
for a range of different quench rates. From these we
determine the non-Gaussian fraction, NnG=N, given by
the area of the central peak above the Gaussian fit, shaded
regions in Fig. 1(d), where N is found from the area under
the full profile. In Fig. 2(a) we plot NnG=N as a function of
the hold time, for a selection of different quenches,
spanning from 50 μs up to 400 ms. For the fastest
quenches, the non-Gaussian fraction appears quite soon
after the quench, growing rapidly in the first few 100 μs, on
the order of a few Fermi times. This is much faster than the

timescale set by the harmonic trap τHO ¼ 1=ω̄ ≈ 3 ms and
indicates that pair formation is thus governed by local
properties of the gas. The Fermi time τF is set by the local
Fermi energy ϵF, where τF ¼ ℏ=ϵF (≈26 μs, at the center of
the cloud), ϵF ¼ kBTF ¼ ℏ2=ð2mÞð3π2nÞ2=3, and n is the
density. Looking at the three fastest quenches, NnG=N,
nearly reaches its equilibrium value in less than 1 ms and is
essentially stable by 10 ms. Longer quenches show very
stable levels of NnG, indicating that pairing is essentially
complete by the end of the quench. Higher final values of
NnG for large tq are consistent with lower final temperatures
as less entropy is added during slower quenches.
While the non-Gaussian (paired) fraction builds up

quickly, it can take considerably longer for the momentum
distribution to reach the expected form for an equilibrium
pair condensate. By subtracting the Gaussian fit to thewings
of n1D;TOFðxÞ from the full distribution, we find the momen-
tum distribution of the non-Gaussian (paired) component
nnGðxÞ. Examples of nnGðxÞ for different hold times follow-
ing a 50 μs quench are plotted in the insets of Fig. 2(b). These
show that even while the area under the curve NnG is nearly
constant, the shape undergoes significant evolution. The
main panel of Fig. 2(b) shows the ratio of the rms width σrms
of the non-Gaussian component (calculated from the square
root of the second moment), relative to the height of the non-
Gaussian peaknnGðx ¼ 0Þ. This ratio is sensitive to the shape
of the distribution and shows clearly how the momentum
distribution becomes sharper with increasing hold time. In
contrast to NnG, the shape of nnGðxÞ can take ∼100 ms to
fully equilibrate. This reflects the long timescales associated
with the dynamics of pairs in low-momentum modes which
are most pronounced for the three fastest quenches. Even
though the radial monopole mode can be excited with an
amplitude of up to a few percent, this does not show up in
NnG=N or the relative width σrms=nnG;0, as expected in a
scale-invariant system like the unitary Fermi gas.
For quenches longer than¼ τHO condensate formation is

significantly more adiabatic. When tq ≥ 2.5 ms the non-
Gaussian component is well described by an inverted
parabola for all th and NnG=N becomes essentially equiv-
alent to a measure of the condensate fraction N0=N,
obtained from a bimodal fit to the full distribution
n1D;TOFðxÞ [37]. This indicates τHO sets the global timescale
for condensate formation. Following a quench, condensate
growth is expected to seed locally, resulting in the appear-
ance of defects (vortices), according to the Kibble-Zurek
mechanism [24,25]. Using shorter expansion times tTOF ∼
6 ms we also observe vortices in clouds following the
quench, however, their presence does not significantly alter
the appearance of the bimodal momentum distribution at
tTOF ¼ tr=4. The increased widths of the pair momentum
distribution in Fig. 2(b) are a result of higher energy
excitations, and lead to a behavior after expansion that
appears similar to turbulent regimes in Bose-Einstein
condensates [40].
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FIG. 2. (a) Evolution of the non-Gaussian fraction NnG=N in
the pair momentum distribution as a function of hold time, th, for
a selection of different quench durations tq. For quenches longer
than a few ms, NnG=N is approximately equal to N0=N found by
fitting a bimodal distribution (Gaussian plus inverted parabola) to
the 1D density profiles. (b) Ratio of the rms width divided by the
height of the non-Gaussian component of the momentum dis-
tribution. The peak shape is seen to evolve for up to 100 ms
following the quench as the occupation of low-momentum modes
approaches equilibrium.
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Finally, we have measured the thermodynamic properties
of the clouds once they have fully equilibrated at unitarity
as a function of the quench time. Figure 3 (blue circles)
shows the temperature, determined at unitarity by fitting the
1D density in situ profiles of trapped clouds to the equation
of state for the pressure [41], after a total time
tq þ th ¼ 1.4 s. Here, the temperature is defined relative
to the local Fermi temperature TF in the center of the clouds
where the local density is found using the inverse Abel
transform. We observe a clear difference between the final
temperatures for slow and fast quenches, with a monotonic
decrease in the final relative temperature as the quench time
is increased. In the adiabatic limit (tq ¼ 400 ms, where we
observe no dynamics after the quench) the relative temper-
ature increases from T=THO

F ¼ 0.06� 0.01 in the BCS
regime to T=TF ¼ 0.09� 0.01 at unitarity. In the BCS
limit, THO

F → TF at the cloud center. The data in Fig. 3
indicate a strong change in the adiabaticity for tq ∼ τHO
with longer quenches being near adiabatic, as in Fig. 2(b).
While sweeping interactions from the BCS regime

to unitarity leads to an increase in the relative temperature
[42], the total energy change ΔE is generally negative and
set by the universal contact parameter I. The contact
measures the probability of finding two atoms at small
separations and governs several thermodynamic and
high-momentum properties. It also sets the amplitude

of the short-range density-density correlator nð2Þ↑↓ðr0Þ ¼
I=ð16π2Þ½1=r02 þ 2=ðr0aÞ� as r0 → 0, where nð2Þ↑↓ðr0Þ ¼R hn̂↑ðr − r0=2Þn̂↓ðrþ r0=2Þid3r and n̂σðrÞ is the density
operator for atoms in state jσi [43]. For an interaction
quench ΔE can be found by integrating the dynamic

sweep relation _E¼−ℏ2=ð4πmÞIðtÞ _a−1ðtÞþ _hVðtÞi, where

_≡ d=dt represents the time derivative and _hVðtÞi accounts
for the energy change resulting from a change in the
confining potential [28,44]. Thus, by examining the energy
change for different quenches, we gain insight into the
evolution of the contact. To determine the energy before
and after the quench, we employ the virial theorem for a
harmonic trap [29,45], E − 2hVi ¼ −Iℏ2=ð8πmaÞ, where
hVi ¼ R

nðrÞVðrÞd3r¼ 3=2Nmω2
rhx2i ¼ 3=2Nmω2

rhy2i is
the potential energy. Because of the radial symmetry of
our trap, the mean square cloud sizes hx2i ¼ hy2i within
our experimental uncertainties. At unitarity, this allows
straightforward determination of the total energy from the
clouds size. However, for weakly interacting clouds the
total energy also requires the contact which is a priori
unknown. Nonetheless, by considering the change in
energy resulting from the quench, we can integrate the
dynamic sweep theorem by parts and combine this with the
virial theorem to show,

ℏ2

4πm

�
I i

2ai
þ
Z

tq

0

_IðtÞ
aðtÞdt

�
¼ 2ðhVfi− hViiÞ−ΔVHO; ð1Þ

where I i and ai are the contact and scattering length before
the quench, hVii and hVfi are the potential energies before
and after the quench. When tq is short compared to
1=ωHO ≈ 3 ms, nðrÞ will not change significantly during

the quench and
R tq
0

_hVðtÞidt ¼ Nmhx2i iðω2
rf − ω2

riÞ≡
ΔVHO where, hx2i i is the mean square width of the cloud
before the quench and ωri and ωrf are the radial trap
frequencies before and after the quench, respectively. The
right-hand side of Eq. (1) depends upon changes in
potential energies and is based entirely on experimentally
measured quantities. For convenience, we label this as
ΔV ≡ 2ðhVfi − hViiÞ − ΔVHO. In contrast, the left-hand
side of Eq. (1) depends on the contact, both before and
during the quench. In Fig. 3 (red diamonds) we also plot
ΔV=ðNEHO

F Þ for tq ≤ 5 ms. As expected, the total energy
decreases as a result of the quench, but the size of the
decrease is smaller for shorter (less adiabatic) quenches. We
note that ΔVHO=ðNEHO

F Þ ≈ −0.03.
For a quench fast compared to the many-body timescale,

the dynamic sweep theorem can be simplified under the
assumption that the contact does not change during the
quench [28]. In this limit, the second term on the left-
hand side of Eq. (1) vanishes and one could determine the
initial contact. However, even for our fastest experimen-
tally accessible quenches we do not reach this limit.
To see this, we can estimate the contact at 1=ðkHOF aiÞ ¼
−1.89 and T → 0 using the BCS result [46] which
yields, I i=ðNkHOF Þ ≈ 0.14 and hence I iℏ2=ð8πmaiÞ ¼
−0.021NEHO

F . This is significantly smaller than any of
the measured values in Fig. 3(b), which indicates that the
second term on the left of Eq. (1) must be ≳4 times larger
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FIG. 3. Thermodynamic properties of equilibrated clouds for
different quench rates. Blue circles show the equilibrium values
of the relative temperature T=TF, where TF is the Fermi
temperature in the cloud center for different quench times after
being held for th > 1 s after the quench. Red diamonds display
the right-hand side of Eq. (1), ΔV, for quenches with tq ≲ τHO,
based on the measured values of the potential energy after
equilibration.
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than the first term, showing that contact undergoes signifi-
cant evolution during the quench. A similar rapid build up
of the contact was seen in a unitary Bose gas [15] and also
for a Fermi gas near a p-wave Feshbach resonance [47].
Our shortest quench, tq ¼ 50 μs, is still longer than the
many-body timescale, τF ≈ 26 μs in the trap center and we
thus conclude that the short-range (high-momentum) cor-
relations, described by the contact, evolve on even shorter
timescales. This is in stark contrast to the long-range (low-
momentum) correlations required for the formation of a
pair condensate that can take up to 4 orders of magnitude
longer to equilibrate.
In summary, we have studied the dynamics of correla-

tions, pair condensation and the thermodynamic properties
of a two-component Fermi gas following an interaction
quench to the unitarity limit. At very short timescales, we
observe the rapid build up of short-range (high-k) corre-
lations, leading to a quick growth of the contact. Over
longer timescales, several τF, we observe the formation of
pairs, signified by the appearance of a central peak in the
momentum distribution, with a momentum distribution that
becomes narrower over time eventually reaching the shape
expected for an equilibrium condensate. The degree of
dynamics in low-k modes depends strongly upon the
adiabaticity of the quench becoming more pronounced
as the quench becomes more nonadiabatic. For quenches
long compared to inverse of the lowest trapping frequency
tq ≫ 1=ωr, the quench is effectively adiabatic and isen-
tropically connects different points on the BCS-BEC
crossover phase diagram. Our study provides quantitative
insight into nonequilibrium dynamics following a quench
across the superfluid transition and may be extended to
probe universal limits on the rate of energy changes in
quantum gases [48].
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