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The quantum speed limit is important in determining the minimum evolution time of a quantum
system, and thus is essential for quantum community. In this Letter, we derive a novel unified quantum
speed limit bound for Hermitian and non-Hermitian quantum systems. The bound is quantified by the
changing rate of phase of the quantum system, which represents the transmission mode of the quantum
states over their evolution. The bound leads to further insights beyond the previous bounds on concrete
evolution modes of the quantum system, such as horizontal or parallel transition or horizontal joining of the
two quantum states in Hilbert space. The bound is linked to the feasibility of the evolutions of the state
vectors, and provides a tighter upper bound. In addition, the generalized Margolus-Levitin bound is
discussed.
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Introduction.—As one of the fundamental questions,
quantum speed limits (QSLs) play a vital role in the
community of quantum physics. Recent advances in quan-
tum engineering have spurred further investigation and
understanding of how quickly a quantum physical system
transitions between distinguishable states. This is also
interesting from a practical point of view, as QSLs can be
employed to estimate the speed of quantum simulations
involving quantum information processing, quantum
computation and quantum metrology [1–4]; identify
decoherence time [5–9]; improve the rate of quantum
information processing; make optimal control of the quan-
tum system; and identify the precision bound in quantum
metrology as well as the experimental measuring of the
environment-assisted speed-up [10], and others [11–13].
New numerical methods such as machine learning can also
be applied in the study of QSLs [14]. In the case of the
unitary evolution, Mandelstam and Tamm derived the lower
bound of the evolution time to be τQSL ¼ πℏ=2ΔE, the
Mandelstam-Tamm (MT) bound [15].Margolus and Levitin
presented a different bound for a closed system τQSL ¼
πℏ=2hEi [16], the Margolus-Levitin (ML) bound. Many
researchers have attempted to develop QSL for the open
quantum system [17–20], and have investigated the relations
between QSL and the physical nature of the quantum
system, including the role of entanglement in QSLs for
open dynamics and a many-body system [21–26], non-
equilibrium dynamics, relativistic and the distinct QSL
bound [27–29], the relation between the maximum inter-
action speed andQSL in quantum spin systems [30], and the
non-Markovianity effect of the environment on accelerating
the speed of evolution [31,32]. QSLs have also been studied
in the quantum representation of the Wigner function
[33–37]. Also, in quantum thermodynamics the maximal
rate of entropy production has been derived from the QSL

[38]. It has been shown that such a speed limit could also
exist in classical systems [33,39].
The previous theoretical framework for the generaliza-

tion of QSL bounds employs the distance between the
states in the manifold space as well as certain inequalities
[5,7,18,27,40,41]. The relevant derivations provide the
intuitively understandable expressions of QSL bounds.
Additionally, it is known that the family of QSLs could
be constructed using the family of contractive Riemannian
metrics [5]. This means that the different distances lead to
different bounds [5,7]. Usually, it is difficult to obtain a
tight and attainable bound through the suitable choice of the
distances [5,7,20,25,42].
Among the generations and developments of QSLs, with

few exceptions [18,21,43–46], these studies have success-
fully generalized the MT-type bounds [5,17–27,40,41].
Although there have been attempts to generalize ML-type
bounds, the current studies of ML-type bounds suggest that
this is a significantly harder task, and so their generation
remains an open question. The challenges on the generation
of the ML-type bound indicate that it is necessary to
investigate and understand the physics behind the bounds.
The evolution of a quantum system is governed by the

Schrödinger equation, however, what remains unnoticed is
the paradoxical situation of the existence of the different
bounds [47]. It is surprising that the different physical
properties seem to exist for the same quantum state
[7,27,47]. One typical scheme to overcome the paradoxical
situation is to derive a unified bound by combining the
MT bound and ML bound together, i.e., reads τQSL ¼
maxfπℏ=2ΔE; πℏ=2hEig for a unitary system and orthogo-
nal states [18,20,21,47]. These inspire us to think what the
physics behind the different QSL bounds, and how the
different QSL bounds are related to the evolution of
the quantum system since the QSLs are the lower bound
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of the time required for a quantum system to evolve.
Additionally, the usefulness of a bound should be consid-
ered since it is linked to the feasibility of its evaluation—to
be computational or experimental.
This Letter presents such a novel unified QSL bound that

is quantified by the changing rate of phase of the quantum
system.QSLbounds are thereforegeneralizedwithin a single
theoretical framework and is not limited to Mandelstam-
Tamm’s and Margolus-Levitin’s formulate. Our QSL bound
represents the “quantum speed” of the evolution of the
quantum system since the phase can be thought as the nature
of the quantum system evolving—the dynamical evolution
of a quantum system leads to the accumulation of phase of
the quantum system, and so it is natural for the transition
speed of the quantum states to be quantified by the changing
rate of phase. This implies that our novel unified bound is
attainable, while also easier to compute and measure. This
also indicates that it is a tight bound since the different QSL
bounds represent the different evolution status of the
quantum system. In contrast to previous studies, we show
the changing rate of phase as a unified quantity, bounding the
speed at which the quantum states evolve. This bound
outstrips the previous generalization of QSL bounds, such
as the zero ground-state energy requirement of the quantum
system for ML-type bounds. In addition, this bound can
provide tighter upper bounds than the previous results.
The concept of phase is of great practical importance in

contemporary physics [48–51]. The QSL bound, quantified
by using the changing rate of phase, helps us to understand
the phase in great detail and leads to further insights in the
quantum community, such as the maximum speed of
quantum gate operations, quantum metrology, quantum
control, adiabatic quantum computation, and indicators of
quantum phase transitions, etc. [11,52–57].
A novel unified QSL bound theory.—Consider a quantum

system that evolves according to the Schrödinger
equation HðtÞjψðtÞi ¼ iℏð∂=∂tÞjψðtÞi, where HðtÞ is the
Hamiltonian of the system. As usual, the states jψðtÞi are
assumed to be the normalized vectors in Hilbert space H .
In the language of differential geometry, the normalized
state vectors jψðtÞi in Hilbert space H form the Stiefel
manifold SN (here, we assume that the Hilbert space has
dimensionN þ 1withN being a non-negative integer). The
Stiefel manifold SN is one of the typical Riemannian
manifold. Roughly speaking, the Stiefel manifold SN can
be thought as the space of sets of N orthonormal vectors in
an N þ 1-dimensional vector space. It is the complex
homogeneous space UðN þ 1Þ=Uð1Þ [49,58,59]. Its cor-
responding projective space and base manifold are denoted
asP andB, respectively. As time marches on, we suppose
the quantum system evolves into the state jψðtþ dtÞi from
the state jϕðtÞi in the time interval dt.
In space H , we define the time-parameter (from time

t ¼ 0 to t ¼ τ) smooth curve, consisting of a family of
vectors jψðtÞi, as C ¼ fjψðtÞi ∈ H g.

From the Stiefel manifold SN , the state jψðtþ dtÞi of the
system, which evolves from the initial state jϕðtÞi by the
distance ds along the curve C , can be written as [58–62]

jψðtþ dtÞi ¼ eidsKjϕðtÞi; ð1Þ

where K is the corresponding generator of ds as the
parameter on the Stiefel manifold SN .
The distance ds can be obtained by employing a

horizontal geodesic in the base manifold B along the
curve C using the Fubini-Study metric. Note that the curve
C is the image of C in the projective space P, that is,
the curve C projects onto (with projection map Π) the
image curve C in the projective space P, namely, C ¼
ΠðC Þ ⊂ P. By extending the state jϕi to an orthonormal
basis fjϕαi; α ¼ 1; 2;…; N þ 1g ∈ B, and jϕ1i≡ jϕi,
the nonzero elements of K in this basis are K ¼ K12 ¼
K21 ¼ 1

2
[59,60].

Following the suggestion made by Aharonov and
Anandan [59], the states of jψðtþ dtÞi and jϕðtÞi are the
points in space P that lie on the geodesic separated by
the distance ds. After including the action of the generator,
the moment of the Aharonov and Anandan distance dsK is
equal to the gauge distance [27,58,59,61,63], namely

dl ¼ dsK: ð2Þ

In the evolution of the quantum system from state jϕðtÞi to
state jψðtþ dtÞi, we have [48,49,64,65]

jψðtþ dtÞi ¼ eidφp jϕðtÞi; ð3Þ

and dφp is the accumulated phase of the quantum system in
the evolution from state jϕðtÞi to state jψðtþ dtÞi.
Now, the maximal quantum speed vQSL, after consider-

ing Eqs. (1)–(3), turns to be [5,7,17,27]

vQSL ¼
���� dldt

����≡
���� dφp

dt

����: ð4Þ

For the quantum evolution, however, as usually, QSL
bound involves estimation of the minimal evolution time
τQSL [5,7]. The QSL time τQSL is defined as the ratio
between some distance between states and the average
speed induced by the quantum evolution, namely

τQSL ¼ L½ψð0Þ;ψðτÞ�
1
τ

R
τ
0 j dφp

dt jdt
; ð5Þ

where L½ψð0Þ;ψðτÞ� is the length of the geodesic line
connecting the rays jψð0Þi and jψðτÞi on the base mani-
fold B.
The expression vQSL of Eq. (4) shows that the changing

rate of phase provides the upper bound to the evolution
speed of the quantum system. Equation (5) establishes the
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expression of QSL time. This novel expression of the QSL
bound shows us the geometric and kinematic characters of
the quantum system during its evolution since the total
phase consists of the geometric phase and dynamical phase.
As the dynamical evolution of the quantum system results
in the accumulation of phase [48–50,66], hence it is
naturally the changing rate of phase that shows us the
“quantum speed” of the quantum system evolution. This
enriches our understanding of the phase of quantum
system. Obviously, the QSL time in Eq. (5) is superior
to the previous expression in terms of its feasibility and
attainability, because the natures of phase in quantum
system have been widely investigated and well understood
[49,64]. In addition, the bound of Eq. (5) naturally provides
a tight bound since it is obtained from the evolution of the
quantum system.
The phase difference between jψð0Þi and jψðtÞi can be

obtained by employing the following definition [67]:

eiφP ¼ hψð0ÞjψðtÞi
jhψð0ÞjψðtÞij : ð6Þ

Correspondingly, the changing rate of phase of the quan-
tum system can be calculated using Eq. (6).
To illustrate the novel bound given by Eq. (5), we apply

it to some nontrivial cases.
Mandelstam-Tamm bound.—We first consider case of

the MT bound derived from the bound of Eq. (5). In this
case, the evolution speed of the quantum system from
state jϕðtÞi to state jψðdþ dtÞi can be described using the
geodesic joining their projection of a horizontal geo-
desic in the base manifoldB [59]. The horizontal geodesic
vector jψ̄ðtÞi in P space satisfies the following geodesic
equation [59,68]

d2

dt2
jψ̄ðtÞi þ

�
ΔEðtÞ
ℏ

�
2

jψ̄ðtÞi ¼ 0: ð7Þ

By employing Eqs. (4), (6), and (7), we can obtain the
speed of evolution of the state vector vQSL ¼ ½ΔEðtÞ=ℏ�
[59,68]. The QSL time of Eq. (5) reduces to the MT-type
bound τQSL ¼ ½ℏ=ΔEðτÞ�L½ψð0Þ;ψðτÞ�, with ΔEðτÞ ¼
1
τ

R
τ
0 ΔEðtÞdt. In particular, when the quantum system

evolves from a initial state to its orthogonal final state
for the case of time-independent Hamiltonian:ΔEðτÞ¼ΔE,
L½ψð0Þ;ψðτÞ� ¼ π=2. Then, we have the MT bound

τQSL ¼ πℏ
2ΔE

: ð8Þ

From the above derivation, it is clear that the MT bound
is obtained from the evolution of the quantum system on
the base manifold B, namely, the MT bound describes the
evolution speed bound of the quantum system by employ-
ing the state vector in the projection space P. This limit

can be quantified using the horizontal geodesic joining the
initial and final state vectors.
Margolus-Levitin bound and its generalization.—After

including the influence of the geometric phase [49,66] in
Margolus and Levitin’s technological route [16], we derive
the generalized ML bound [69]

τQSL ¼ πℏ
2hEi þ

ℏ
hEi ½φgðtÞ − φgð0Þ�: ð9Þ

Equation (9) shows that contributions of geometric phase
exist in the ML bound. Clearly, if the geometric phase
remains constant ½φgðtÞ − φgð0Þ ¼ 0� during the evolution
of the quantum system, the generalized ML bound of
Eq. (9) reduces to the ML bound τQSL ¼ πℏ=2hEi. This
means that the ML bound is obtained under the condition
that the geometric phase remains constant [namely,
ðd=dtÞφgðtÞ ¼ 0] while the quantum system evolves. A
typical case is where the state vector evolves along the
geodesic that meets φg½C� ¼ 0 [65].
So, based on this setting, we find that

���� ddtφp

���� ¼ 1

ℏ
hψðtÞjHðtÞjψðtÞi≡ hEðtÞi

ℏ
; ð10Þ

because the total phase is equal to the sum of the dynamical
phase and the geometric phase [48,49,65].
Substituting Eq. (10) into Eq. (5) for the time-independent

Hamiltonian H, and recalling that jψð0Þi and jψðτÞi are
orthogonal, we obtain

τQSL ¼ πℏ
2hEi ; ð11Þ

which is the ML bound.
The above derivation of the generalized ML bound

illustrates the difficulty of generalizing the ML bound
using only the requirement of inequalities. We can derive
the generalized ML bound after including the evolution
condition under a constant geometric phase of the quantum
system.
The other type bound.—When the quantum system

evolves parallel along the curve C with the projection
C ∈ B, we have the dynamical phase φdyn½C � ¼ 0 [65]
along the lift curve C of C, and we have dφPðtÞ=dt ¼
dφgðtÞ=dt [49,65].
In this case, Eq. (5) reduces to the previous result [27] as

follows:

τQSL ¼ 1
1
τ

R
τ
0 j _φgjdt

L½ψð0Þ;ψðτÞ�: ð12Þ

In Fig. 1, we give the sketch of the above three evolution
modes of the quantum system in Hilbert space H with its
projection in base manifoldB. The green curve C 1 denotes
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the evolution of the quantum system governed by the
Schrödinger equation, and it accumulates the total phase
φP. The blue curve C 2 denotes the geodesic evolution of
quantum system which accumulates the dynamical phase
φdyn. The red curve C 3 denotes the parallel evolution of
quantum system which accumulates the goemetric phase
φg. Their QSL bounds correspond to Eqs. (8), (11), and
(12), respectively.
Non-Hermitian Hamiltonians.—The novel unified

bound of QSL given by Eq. (5) is not limited to the
Hermitian quantum mechanics, and can be applied to non-
Hermitian quantum systems. For non-Hermitian quantum
mechanics, we can introduce the complete biorthonormal
set of basis vectors, in which the pair of topological vector
spaces over complex number field are in duality: we denote
the topological vector space as V and its dual space as V�
[63,70]. By employing the dual topological vector spaces,
the phases of the non-Hermitian quantum system have been
investigated [63,71,72]. Based on investigations of the
phase of a non-Hermitian quantum system, the QSL of
Eq. (5) can be applied in a non-Hermitian quantum system.
Example 1.—We first consider a typical case of the ratio

α ¼ ðΔE=hEiÞ ¼ 1. It is shown [69] that our novel unified
bound of Eq. (5) presents the same conclusion of Theorem
1 in Ref. [47]: the equivalent MT and ML bounds can be
attained through a specific setting of the initial states.
Example 2.—Other interesting cases have been consid-

ered forα ¼ ðΔE=hEiÞ ≠ 1. In Ref. [47], Levitin andToffoli
investigated the upper bounds of the QSL time for a three-
level systemwith a time-independent HamiltonianH, where
the equation of eigenenergy is HjEni ¼ EnjEni.
(1) Case of α < 1. The following initial state jψð0Þi ¼P
n cnjEni was considered in Ref. [47], with jcnj2 ¼ pn

(n ¼ 0, 1, 2). Under the condition that 0 < p0 ≪ 1, pn was
assumed as [47] p0 ¼ ðδ=2Þ þOðδ2Þ, p1 ¼ 1

2
− ðδ=4Þ½1þ

cosðω1tÞ� þOðδ2Þ, and p2 ¼ 1
2
− ðδ=4Þ½1 − cosðω1tÞ� þ

Oðδ2Þ, with δ ≪ 1.

The time-evolving vectors jψðtÞi can, after including the
influence of the geometric phase, be written as follows
(under the assumption that the ground energy of the system
is zero)

jψðtÞi ¼
X
n

cne−iωnteiφ
ðnÞ
g ðtÞjEni; ð13Þ

where ωn ¼ En=ℏ.
The corresponding horizontal state jψ̄ðtÞi of jψðtÞi in

Eq. (13) is

jψ̄ðtÞi ¼ e
i
ℏ

R
t

0
hHðt0Þidt0 jψðtÞi

¼
X
n

cne
i½φðnÞ

g ðtÞ−ωntþ1
ℏ

R
t

0
hHðt0Þidt0�jEni; ð14Þ

where hHðtÞi≡ hEi ¼ hψðtÞjHðtÞjψðtÞi ¼ p1E1 þ p2E2.
Then, using Eqs. (14) and (6), the changing rate of phase
jdφp=dtj is obtained as [69] j _φPj ¼ ðΔE=ℏÞð1 − δϒ1Þ þ
Oðδ2Þ, where ϒ1 ¼ f½ω1 þ ω2 þ ðω1 − ω2Þ cosðω1tÞ�=
½2ðω2 − ω1Þ�g þ ½ðω1ω2Þ=ðω2 − ω1Þ2�.
Applying the condition that the finial state is orthogo-

nal to the initial state L ¼ π=2, and using Eq. (5), we
have τQSL ¼ ½πℏ=2ΔE�½1þ ð1=τÞ R τ

0 p0ϒ1dt�, with τ ¼
π=4ðω2 − ω1Þ.
Thus, choosing

p0 < ετ

�Z
τ

0

ϒ1dt
�

−1
; ð15Þ

we obtain, after considering Eq. (8),

πℏ
2ΔE

< τQSL ≤
πℏ
2ΔE

ð1þ εÞ: ð16Þ

This is the same expression as in Ref. [47].
(2) Case of α > 1. In this case, the initial state is

assumed to be as follows [47] jψð0Þi ¼ c0j0i þ
c1jE1i þ c2kþ1jE2kþ1i, where k ¼ 1; 2;…; E2kþ1 ¼
ð2kþ 1ÞE1. Let p0 ¼ 1

2
, p1 ¼ 1

2
½1 − ðβ=k2Þ�, p2kþ1 ¼

ðβ=2k2Þ, where p2kþ1 ¼ ðβ=2k2Þ ≪ 1, pν ¼ jcνj2
ðν ¼ 0; 1; 2kþ 1Þ. Correspondingly, the time-dependent
states can be written as jψðtÞi ¼ c0j0i þ e−iω1tc1jE1iþ
e−iω2kþ1tc2kþ1jE2kþ1i, where ω1 ¼ ðE1=ℏÞ and ω2kþ1 ¼
ðE2kþ1=ℏÞ.
Then, using Eq. (6) and jψðtÞi, we can obtain [69] j _φPj ¼

ðhEi = ℏÞf1− ð2β = kÞ½1 − cosð2kω1tÞ þ [(sinð2kω1tÞ×
sinðω1tÞ)=(1þ cosðω1tÞ)]�g.
Applying the condition that the finial state is orthogonal

to the initial state L ¼ π=2, and using Eq. (5), we have

τQSL ¼ πℏ
2hEi

�
1þ 1

τ

Z
τ

0

β

k
ϒ2dt

�
; ð17Þ

FIG. 1. Sketch of quantum system evolution in the Hilbert
space H with the projection of its evolution paths in base
manifold B.
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where ϒ2 ¼ 2f1− cos ð2kω1tÞ þ ½( sin ð2kω1tÞ sinðω1tÞ)=
(1þ cosðω1tÞ)�g, and τ ¼ π=ω1.
Finally, choosing

β

k
< ετ

�Z
τ

0

ϒ2dt

�
−1
; ð18Þ

and combining Eqs. (11), (17), and (18), we obtain

πℏ
2hEi < τQSL ≤

πℏ
2hEi ð1þ εÞ: ð19Þ

This is the same expression as in Ref. [47].
In Fig. 2 we show the numerical results for ε as a

function of p0 [panel (a)] and β=k [panel (b)]. The solid red
lines denote our results with ε > ð1=τÞ R τ

0 p0ϒ1dt in
Eq. (15), and with ε > ð1=τÞ R τ

0 ðβ=kÞϒ2dt in Eq. (18),
which correspond to MT and ML-type bounds, respec-
tively. The dashed blue lines denote the results of Ref. [47]
with ε>p0

2
fð1=α2Þ−1−ð4=πÞsinπ

2
½ð1=αÞ−1�g [panel (a)],

and with ε > 2β=k [panel (b)], respectively. As shown
in the figure, the values of ε in Eqs. (15) and (18) are
smaller than the values of ε given in Ref. [47]. This means
that our results have tighter upper bounds than the results of
Ref. [47] since ε sets the upper bound of τQSL in Eqs. (16)
and (19).
Conclusions.—In this Letter, a novel unified expression

of QSL has been derived for Hermitian and non-Hermitian
quantum systems. The QSL bound is quantified by the
changing rate of phase of the quantum system. The QSL
bound is of the feasibility since the total phase of the
quantum system consist of the geometric phase and the
dynamical phase, which is explicitly linked to the initial
state and the properties of the Hamiltonian. In addition,
many computational methodologies and experimental mea-
surements of phase for the quantum system are developed
[49,64]. This shows that the QSL bound is theoretically and
experimentally attainable.

As the bound can be obtained via the changing rate of
phase, it provides us the potential possibility: how can we
evolve faster? The evolution of a QSL along the curve C by
jψðtÞi could tell us if we can evolve faster along another
curve that has the same speed, or confirm that we are
already doing the best we can. In particular, in the
community of quantum simulators and communications,
the novel unified QSL bound can be applied to investigate
the minimum time of operation of quantum gates that
operate on qubits. Additionally, the bound could be
employed as the cost function for optimizing the adiabatic
quantum computations.
The tightness of QSL bounds plays an important role, as

a tight QSL bound can be employed to estimate the fastest
possible evolution speed. The QSL bound of Eq. (5)
presents the bound of the quantum system evolving along
the cure C by jψðtÞi. As shown above, it can be reduced to
the celebrated MT and ML bounds and other previous
bound based on the evolution modes of the quantum
system. Our numerical results show that the QSL bound
of Eq. (5) also gives us the tighter upper bounds when
compared to previous results.
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