
Fractional Excitations in Non-Euclidean Elastic Plates

Kai Sun and Xiaoming Mao
Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040, USA

(Received 11 January 2021; accepted 3 August 2021; published 27 August 2021)

We show that minimal-surface non-Euclidean elastic plates share the same low-energy effective theory
as Haldane’s dimerized quantum spin chain. As a result, such elastic plates support fractional excitations,
which take the form of charge-1=2 solitons between degenerate states of the plate, in strong analogy to their
quantum counterpart. These fractional excitations exhibit properties similar to fractional excitations in
quantum fractional topological states and in Haldane’s dimerized quantum spin chain, including
deconfinement and braiding, as well as unique new features such as holographic properties and diodelike
nonlinear response, demonstrating great potentials for applications as mechanical metamaterials.
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Introduction.—The analogy between quantum and
classical physics plays an important role in the history
of many-body physics. For example, in the early develop-
ment of quantum topological states, concepts of classical
topological defects (e.g., vortices and solitons) have been
crucial to the understanding of fractional excitations in
fractional quantum Hall systems [1] and quantum spin
chains [2,3]. A more recent example is the duality between
topological defects in elasticity and fractons in tensor gauge
theories [4]. Conversely, quantum topological states of
matter inspired the blossoming new field of topological
mechanics [5–19]. So far, mechanical analogs have only
been achieved for integer quantum topological states, but
not yet the more exotic fractional ones.
In a typical quantum system, excitations are usually

composed of integer numbers of fundamental building
blocks (quanta). However, in certain strongly correlated
fractional topological systems, such as fractional quantum
Hall systems [20] or Z2 spin liquids [21], a low-energy
excitation is a fraction of the fundamental building blocks,
and this phenomenon is known as fractionalization. More
specifically, the definition of fractional excitations involves
five criteria. (1) “Integer” excitations need to be defined,
i.e., the system needs to obey a certain quantization
condition, such that excitations can be classified by a
certain integer quantum number (e.g., charge). (2) An
integer excitation then “breaks up” into multiple pieces.
Most importantly, the interactions between these pieces
need to decay with their separation in space, known as
“deconfinement.” In quantum systems, deconfinement is a
highly nontrivial requirement, because it is usually impos-
sible to break a quantum particle, e.g., an electron. In
classical physics, it is often possible to partition an object.
However, such partition in classical physics usually cannot
meet the next criterion. (3) Equal partition has to be
enforced as we split the integer excitation. For example,
if a charge-1 integer excitation splits into two equal parts,

each part is a fractional excitation with a charge of 1=2.
Such equal partition is natural in quantum systems, but a
nontrivial requirement in classical systems. Furthermore,
two more criteria need to be enforced to ensure that these
fractional excitations cannot be trivially mapped back to
integer ones: (4) a fractional excitation must be a topo-
logical object, which cannot be created by any local
deformations, and (5) these fractional excitations must
exhibit novel properties impossible for any integer ones,
such as braiding [22].
In this Letter, we show that minimal-surface elastic plates

support fractional low-energy excitations. Because of the
presence of the minimal-surface associate family, these
systems exhibit two types of soliton configurations: integer
and half-integer, in strong analogy to the quantum integer
and fractional excitations in the one-dimensional (1D)
dimerized spin chains of Haldane [2]. Following the notion
in Refs. [2,3], the term soliton here refers to topological
solitons (kinks), instead of solitons arising from nonlinear
wave equations. We demonstrate that the classical system
and the quantum spin chain share the same low-energy
effective theory (compact sine-Gordon), and in both systems,
fractionalization is induced by a Z2 symmetry. As a result,
this classical version of fractional excitations shares identical
physical properties as their quantum counterpart. For exam-
ple, integer excitations are conventional and could be created
via local deformations, but once it splits into two fractional
excitations, each of them is a topological excitation, robust
against any local perturbations.
These fractional excitations exhibit exotic mechanical

properties, including braiding which is general to fractional
excitations, and holographic property and diodelike
torque-rotation response which are unique to these mini-
mal-surface plates. These novel properties may find broad
applications as mechanical metamaterials.
2D non-Euclidean plates.—Non-Euclidean plates

are elastic plates having no stress-free configurations.
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Their elastic energy is composed of two parts E ¼ Es þ Eb
for stretching (Es) and bending (Eb) energies [23,24]. The
stretching energy depends on the first fundamental form
(i.e., the metric tensor) g of the manifold

Es ¼ h
Z

dA
�
B0 −G0

2
trðg − g0Þ2 þ G0tr½ðg − g0Þ2�

�
;

ð1Þ

where h is the thickness of the sheet and the elastic moduli
are B0 ¼ f9BG=½4ð3Bþ 4GÞ�g and G0 ¼ G=4 with B and
G being the 3D bulk and shear moduli of the material
respectively. Es is minimized if g ¼ g0. The bending energy
depends on the second fundamental form (i.e., the curva-
ture tensor) b. In this study, we focus on 2D non-Euclidean
plates, i.e., thin sheets homogeneous along the thickness
direction, so the bending energy takes the following form

Eb ¼ h3
Z

dA
G
12

�
8ð3BþGÞ
3Bþ 4G

H2 − 2K

�
; ð2Þ

where H ≡ tr b and K ≡ det b= det g0 are the mean and
Gaussian curvatures respectively. Because Es ∝ h and
Eb ∝ h3, Es is the dominant part in the small thickness
limit h → 0.
We highlight one important symmetry of 2D plates: the

elastic energy [Eq. (2)] is invariant if the curvature tensor
flips sign (b → −b), which is a Z2 symmetry. This Z2

symmetry originates from the fact that the two sides of a
plate are equivalent, and thus the transformation b → −b
(equivalent to flipping the two sides) is a symmetry
operation that preserves the energy. This Z2 symmetry
plays a crucial role for fractional excitations.
Minimal surfaces and low-energy effective theory.—

Minimal surfaces are 2D surfaces that minimize their area
locally, characterized by H ¼ 0. In this Letter, we focus on
2D plates whose target metric tensor (g0) is that of a
minimal surface. In this case, minimization of elastic
energy E in the h → 0 limit gives g¼g0 and H¼0 [25].
However, this does not uniquely determine one ground
state. Instead, there exist infinitely many minimal surfaces
with g ¼ g0 and H ¼ 0 and all these configurations are
degenerate ground states of E (where the only nonzero term
is −2K which is fully determined by g0 and thus is a
constant) [26]. This set of minimal surfaces, which share
the same metric tensor, are called an “associate family,” and
it is known that minimal surfaces in an associate family
can be labeled by a phase angle φ [27]. As we vary φ,
minimal surfaces in this associate family deform smoothly
into each other. As φ increases by 2π, the surface returns to
its original configuration. One such example, helicoid-
catenoid associate family, is shown in Fig. 1(a) [28].
In summary, the associate family that a minimal-surface

plate belongs to defines a “soft mode” of this plate, where
we can deform the plate with zero elastic-energy cost to the

leading order [up to Oðh3Þ]. This soft mode dominates
low-energy deformations of such plates.
In particular, we consider a long ribbon of a 2D minimal-

surface plate. Here, low-energy excitations can be charac-
terized by a slowly varying φ along the ribbon, φðvÞ, where
v is the coordinate along the ribbon. In an ideal minimal-
surface plate, because all configurations in the associate
family have the same energy, the elastic energy take the
following form to the leading order E ¼ R

dv½ð∂vφÞ2�, i.e.,
energy cost from inhomogeneity. However, in reality, due
to the finite thickness and other deviations from the ideal
2D limit, different configurations in the associate family may
have some small energy difference, and thus an additional
term arises E ¼ R

dv½ð∂vφÞ2 þ VðφÞ� [28]. For a generic
2D minimum surface, V must be a periodic function with
VðφÞ ¼ Vðφþ 2πÞ due to the periodic structure of the
associate family. For simplicity, here we will take the lowest
Fourier harmonic VðφÞ ¼ γ cosðφ − φ0Þ, but it must be
emphasized that the same qualitative features we discuss
below survive even if more complicated VðφÞ is considered.
As a result, the elastic energy now takes the form of a sine-
Gordon theory, which supports soliton solutions. Here, we
define the soliton charge asΔφ=ð2πÞ, whereΔφmeasures the
change of φ across a soliton. Because of the periodicity
VðφÞ ¼ Vðφþ 2πÞ, it is easy to verify that the soliton
solution for this sine-Gordon elastic energy has Δφ ¼ 2π
and thus the soliton charge is one. Therefore, they will be
called integer excitations (i.e., integer solitons). This quan-
tization is due to the periodic structure of the associate family.
Fractional excitations.—In 2D plates, the Z2 symmetry

discussed above enforces a nontrivial constraint. In a
minimal-surface associate family, this Z2 transformation
(b → −b) corresponds to φ → φþ π in the Weierstrass-
Enneper parametrization [27,28]. Thus, it implies that the
elastic energy remains invariant under φ → φþ π. We then
must also have VðφÞ ¼ Vðφþ πÞ, i.e., the periodicity of
the function VðφÞ is reduced from 2π to π. The elastic
energy to the lowest harmonic in VðφÞ is then

E ¼
Z

dvfð∂vφÞ2 þ γ cos ½2ðφ − φ0Þ�g ð3Þ

FIG. 1. (a) The helicoid-catenoid associate family. (b),(c)
fractional excitation configurations from FEA of ribbons with
helicoids (b) and catenoids (c) ground states.
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where an extra factor of 2 arises in the cos function, and
thus the soliton of this sine-Gordon theory has Δφ ¼ π,
leading to soliton charge 1=2. These charge-1=2 solitons
are the fractional excitations.
This mechanism of symmetry-induced fractionalization

is identical to the fractional excitations in Haldane’s
dimerized spin chain, where fractional spin-1=2 solitons
arise from a Z2 symmetry (i.e., translation by an odd integer
times the lattice constant) [2]. This physics is also in strong
analogy to nematic liquid crystals, where the molecules
(and the order parameter) are invariant under a π rotation,
and this Z2 symmetry results in fractional topological
defects in nematic liquid crystals, i.e., disinclinations or
disinclination lines, which can be viewed as half of a vortex
or a vortex line [29,30].
Guided by the low-energy effective theory, we perform

finite element analysis (FEA) of helicoid- and catenoid-
ribbons as an example to verify the existence of fractional
excitations as their low-energy excitations. In particular,
we simulate a narrow ribbon with E ¼ Es þ Eb as given in
Eqs. (1) and (2) with g0 of the helicoid-catenoid associate
family. A small perturbation is added to Eb to lift the
infinite degeneracy of the ground states, favoring either the
helicoid (φ ¼ �π=2) as ground states or the catenoid
(φ ¼ 0; π) as ground states, corresponding to φ0 ¼ 0 and
φ0 ¼ π=2 in Eq. (3) respectively [28]. This simulation did
not enforce the excluded-volume condition, and thus the
ribbon may intersect with itself. Enforcing excluded
volume doesn’t change any qualitative conclusions.
From the FEA, we found that a fractional excitation is

indeed a local energy minimum [Figs. 1(b) and 1(c)]. When
the helicoid is the ground state, the fractional excitation is
the domain boundary between a left-handed (L) section of
helicoid and a right-handed (R) one. When the catenoid is
the ground state, the fractional excitation is also a domain
boundary, across which the two sides (inside and outside)
of the catenoid flip. The fact that a 1=2 excitation
corresponds to a domain boundary is universal for any
1=2 excitation in any minimal-surface plates, as well as in
dimerized quantum spin chains [2]. Because it is a domain
boundary, such fractional excitations cannot be created by
any local deformations, in contrast to integer excitations,
which can be created or removed locally.
In particular, for the helicoid ground states, by minimiz-

ing the elastic energy, we find that such a domain structure
always bends the ribbon by nearly 180°, i.e., each 1=2
excitation implies a sharp U turn. The origin of this sharp
turn is that φ changes between �π=2 across the soliton,
thus the soliton profile is characterized by a narrow section
of a catenoid, which turns the ribbon.
Quantum-classical analogy and braiding.—To set the

stage for comparing these classical fractional excitations
with their quantum counterparts, we first provide a brief
review of 1D dimerized spin chains and 2D Z2 spin liquids.
A 2D Z2 spin liquid is one of the most important fractional

topological states (see, e.g., Refs. [21,31] and references
therein). The study of Z2 spin liquids originates from
Anderson’s resonating-valence-bond (RVB) scenario
[32,33] in frustrated quantum spin systems and quantum
dimer models [34–36]. This exotic quantum phase of
matter is characterized by a topological Ising gauge theory
and gives rise to deconfined fractional excitations, e.g.,
spinons which carry spin-1=2 but no charge [37–41]. Later,
an exactly solvable model with the same topological order
was introduced, known as the toric code model of Kitaev
[42]. A 1D dimerized spin chain (e.g., the Majumdar-
Ghosh model [43]) does not show a Z2 topological order,
but it shares a certain similar feature as the Z2 spin liquids.
Here we start from the 1D case by considering the 1D

Majumdar-Ghosh model (spin-1=2 Heisenberg spins with
frustrated nearest and next-nearest-neighbor antiferromag-
netic couplings) [43]. This model has two dimerized
ground states [Figs. 2(a) and 2(b)], where each box
represents a spin singlet pair (a “dimer”). One obvious
excitation is to break a dimer, transferring a singlet into a
triplet, carrying integer spin S ¼ 1. The low-energy effec-
tive theory of this chain is a sine-Gordon theory (known as
Abelian bosonization [44–46]) same as for the ribbon we
discuss, where the spin-1 local excitation is a quantum
soliton, which can fractionalize into two deconfined spin-
1=2 solitons [2] [Figs. 2(c) and 2(d)]. In both the quantum
model and the ribbon, integer excitations can be created-
removed locally (although this is beyond the low-energy
theory), but the spin-1=2 excitations cannot.
One important and unique property of these fractional

particles is that by moving such fractional particles around
noncontractible loops, the global state of the entire system
can be transformed in a nontrivial way. One such example
is “braiding” (i.e., moving particles around each other),
which plays a crucial role in the understanding of fractional
quantum Hall effects, Majorana modes and topological
quantum computing [22]. In 1D, because one cannot
move one particle around another as in 2D, a different

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

FIG. 2. Analogous fractional excitations in (a)–(d) a dimerized
spin chain and (e)–(h) a helicoid ribbon. The spin chain has two
degenerate ground states (a) and (b). A spin-1 excitation can be
created via local perturbations (c), which splits into two decon-
fined spin-1=2 excitations (d). (e)–(f) The two degenerate ground
states with opposite chirality of a helicoid ribbon. (g) A charge-1
soliton can be created locally, and split into two charge-1=2
solitons (h).
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noncontractible loop is utilized [47] as discussed below,
which reflects the same nontrivial impact of a fractional
excitations. As shown in Fig. 2(d), moving the two frac-
tional excitations in the 1D Majumdar-Ghosh model
away from each other flips the ground state from (a) to (b).
This phenomenon also arises in minimal-surface plates
[Figs. 2(e)–2(h)]. An integer soliton of charge-1 can be
locally generated, and split into two charge 1=2 solitons.
This pair of fractional excitations are deconfined, as the
ribbon between them is in ground state. Moving this pair of
fractional excitations away from each other flips the ribbon
between R and L helicoids.
For a 2D Z2 liquid, a similar phenomenon arises [31],

where moving a pair of fractional excitation around an
annulus flips the topologically degenerate ground states
[Fig. 3]. This is analogous to the motion of fractional
excitations in the catenoid.
Holographic property.—In addition to the analogy to

their quantum counterparts, fractional excitations in a helical
ribbon have certain unique features. One example is that
these solitons are holographic, which means that if there is
only one charge-1=2 soliton in a helicoid, we can control its
location at the two ends of the helicoid. This is because this
soliton is the domain boundary between the L and R
sections. For a helicoid of total length l and L section
length x, the helicity of the whole ribbon (i.e., the net number
of R twist) is ðl − 2xÞ=λ where λ is the pitch of the helicoid.
This directly relates helicity to the position of the soliton.
Thus, by twisting the two ends of the ribbon relative to one
another, one can change helicity and the position of the
soliton holographically. This holographic control is not a
general property of fractional excitations, but a special
feature for fractional excitations in helicoids, and provides
a natural way to generate these fractional excitations.
Diodelike torque-rotation response.—The holographic

property of this fractional excitations gives rise to unusual

mechanical response. One prominent example is that when
one end of the ribbon is fixed and the center-line of the
ribbon is confined to be straight (e.g., by embedding a
stiff rod), the torque-rotation relation at the opposite end
strongly resembles the current-voltage (IV) characteristics
of a diode. We simulated this effect assuming an elastic
energy of the form in Eq. (3), and the results are shown in
Fig. 4. When counterclockwise rotation is applied to the
end of an R helicoidal ribbon, it tightens the ribbon and
leads to a linear torque-rotation response. In contrast, when
clockwise rotation is applied to the end of this ribbon, it
generates a fractional excitation, which turns the R helicoid
into an L helicoid. At small counterclockwise rotation the
response is still linear (which homogeneously loosens the
helicoid), but as the rotation increases, a small barrier
(green area in Fig. 4, the energy of one soliton) is overcome
and the torque vanishes, as further rotation just moves the
soliton to the left, where the elastic energy stays constant.
This strong asymmetry resembles the IV characteristics of a
diode, where voltage of different directions generates
currents of dramatically different amplitudes.
Furthermore, this system exhibits convenient programm-

ability by placing the soliton at different locations in the
ribbon which shifts the torque-rotation curve. This effect
can potentially be applied to a broad range of problems
such as wave rectification, impact mitigation, mode con-
version, and mechanical logic circuits.
Conclusion and discussion.—We demonstrate that due to

minimal-surface associate families, non-Euclidean elastic
plates can support low-energy fractional excitations that
strongly resemble fractional quantum excitations. These
fractional excitations are highly robust and cannot be
locally created or destroyed. They exhibit novel mechanical
properties such as holographic control and diodelike
torque-rotation response. It is worth pointing out that
fractional excitations in quantum topological states of
matter and discussed here are distinct from fractional
solitons in Refs. [48–51], the physics of which is com-
pletely different despite the similarity in terminology.

FIG. 3. Fractional excitations and topological degeneracy.
(a)–(d) A quantum Z2 spin liquid on an annulus, with two
degenerate ground states (a),(b) due to topological degeneracy.
(c) A spin-1 excitation is introduced via local perturbations and
split into two spin-1=2 fractional excitations. (d) If these two
fractional excitations move around the annulus and annihilated
with each other, the system turns from ground state (a) to (b).
(e)–(h) A catenoid with the same geometry shows the same
property. The two degenerate ground states correspond to swap
the two sides of the 2D manifold (e),(f). One can create two
charge-1=2 solitons (g) and move them around the catenoid (h),
flipping the catenoid to ground state (f).

FIG. 4. Diodelike torque-rotation response. Three representa-
tive configurations are shown for the ground state (middle), a
state with counterclockwise rotation (orange arrow) where the
helicoid is tightened (right), and a state with clockwise rotation
where a soliton (red arrow) is generated (left).
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The non-Euclidean plates discussed in this Letter can be
realized experimentally through various techniques of metric
control, such as stimuli responsive gels, strain engineering,
halftone and gray-scale 3D printing [24,52–54]. The
unavoidable finite thickness of the ribbon in experiments
can be utilized to enforce the Z2 symmetry of the problem
and select different ground states, as the degeneracy of other
φ states will be lifted by higher order terms in h. The unique
holographic control and diodelike nonlinear elastic response
may open the door to novel mechanical metamaterials.
Furthermore, this elastic realization also offers a new system
for future explorations for other species of solitons, such as
static and traveling breathers, the quantum versions of which
has been studied recently [55–59].
In addition, the fractional excitation in the case of

helicoid elastic ribbons share a lot of similarities with
various types of kinks and perversions between domains of
different handedness in other helical structures such as
tendrils on climbing plants [60], intrinsically curved rods
[61], self-assembled Janus particle spirals [62], elastic bi-
strips [63], helical strings [64], and minimal-surface liquid
films [65]. These fractional excitations also share similar-
ities with solitons and other localized excitations in elastic
sheets [66–69] and out-of-equilibrium 1D models [70,71].
Here we reveal their unexpected link with fractional
quantum excitations.
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