
Supermagnonic Propagation in Two-Dimensional Antiferromagnets

G. Fabiani , M. D. Bouman, and J. H. Mentink
Radboud University, Institute for Molecules and Materials (IMM) Heyendaalseweg 135, 6525 AJ Nijmegen, Netherlands

(Received 22 January 2021; revised 18 May 2021; accepted 15 July 2021; published 25 August 2021)

We investigate the propagation of magnons after ultrashort perturbations of the exchange interaction in the
prototype two-dimensional Heisenberg antiferromagnet. Using the recently proposed neural quantum states,
wepredict highly anisotropic spreading in space constrained by the symmetry of the perturbation. Interestingly,
the propagation speed at the shortest length scale and timescale is up to 40% higher than the highest magnon
velocity. We argue that the enhancement stems from extraordinary strong magnon-magnon interactions,
suggesting new avenues for manipulating information transfer on ultrashort length scales and timescales.

DOI: 10.1103/PhysRevLett.127.097202

Introduction.—The study of magnons, the collective spin
excitations in magnetic systems, has triggered significant
interest in recent years. Stimulated by the potential for
high-speed low-energy data processing, high-energy coher-
ent magnons are intensively investigated in the field of
magnonics [1] and spintronics [2,3]. In addition, high-
energy magnons have a crucial role in the microscopic
dynamics of ultrafast switching between magnetically
ordered states [4–8], and are potentially essential for the
stabilization of various complex quantummany-body states
[9–11]. Furthermore, these studies are greatly stimulated by
the availability of femtosecond x-ray techniques [12],
which ultimately can measure the propagation of magnons
with nanometer spatial and femtosecond temporal resolu-
tion. Nevertheless, rather little is known about the propa-
gation of high-energy magnons at these ultrashort length
scales and timescales.
A direct way to access high-energymagnons is via optical

perturbations of the exchange interactions [13], as well
established in Raman spectroscopy, both in the frequency
[14,15] and time domain [16–18]. In this approach, high-
energy magnons are excited in pairs with wavelengths as
small as the distance between two atoms, corresponding to
oscillation frequencies determined by the exchange energy.
Interestingly, the spectrum of these magnon pairs is signifi-
cantly affected by magnon-magnon interactions [19–21].
This is particularly true for the case with strongest quantum
spin fluctuations, i.e., the relevant case of spin S ¼ 1=2 in
two dimensions (2D) [20,22], for which even the single-
magnon spectra are strongly modified at short wavelengths
[23–31]. Hence, magnon-magnon interactions might have a
pronounced effect on the propagation of high-energy mag-
nons, especially in the systems for which experimentally
the strongest quantum fluctuations are found [32,33].
Therefore, we aim to understand both howmagnon-magnon
interactions influence the propagation of magnon pairs, and
to quantify how strong this effect becomes in the regime of
strongest quantum fluctuations.

Theoretical investigation of magnon propagation in this
deep quantum regime is highly challenging, since it
requires to solve the unitary dynamics of an extended
quantum many-body system with strong spatial and tem-
poral quantum spin correlations, for which no exact
methods exist. Recently, however, a new family of algo-
rithms was proposed which are inspired by machine
learning [34]. Although being inherently a variational
method, these neural quantum states (NQSs) offer a nearly
unbiased approach to the full quantum dynamics. In
particular, it was shown that NQSs are highly efficient
for the simulation of quantum spin dynamics in the most
challenging 2D limit [35,36].
Here, we apply the NQS to investigate the propagation of

magnons after ultrashort perturbations of the exchange
interaction in the square lattice spin-1=2 antiferromagnetic
Heisenberg model. We find that the correlation spreading
resembles the anisotropic propagation pattern expected
from noninteracting magnons. Interestingly, however, at
the shortest length scales and timescales, we predict that the
spreading speed qualitatively deviates from noninteracting
magnons, reaching speeds that are significantly higher than
the highest magnon group or phase velocity. By compari-
son with approximate results obtained with Schwinger
boson mean-field theory (SBMFT), we identify that this
enhanced spreading speed stems from an interplay between
a localized quasibound state emerging from magnon-
magnon interactions and propagating, nearly noninteract-
ing magnon pairs. We predict 40% enhancement of the
propagation speed in the regime of strongest quantum
fluctuations.
Model and method.—We study the spin-1=2 antiferro-

magnetic Heisenberg model on a square lattice with
N ¼ L × L spins Ŝi ¼ ŜðriÞ, with ri ¼ ðxi; yiÞ

Ĥ ¼ Jex
X
hiji

Ŝi · Ŝj; ð1Þ
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where Jex is the exchange interaction (Jex > 0) and h·i
restricts the sum to nearest neighbors. We consider the
dynamics induced by a time-dependent perturbation of
the exchange interaction [13,16–18,37,38], modeled by the
perturbation

δĤðtÞ ¼ ΔJexðtÞ
1

2

X
i;δ

ðe · δÞ2ŜðriÞ · Ŝðri þ δÞ; ð2Þ

where e is a unit vector that determines the polarization of
the electric field of the light pulse which causes the
perturbation and δ connects nearest neighbor spins. This
perturbation is reminiscent to the Loudon-Fleury theory of
spontaneous Raman scattering [39]. In the remainder of this
work we set ℏ ¼ 1 and the lattice constant a ¼ 1, and work
at zero temperature.
To simulate the real-time dynamics following Eq. (2) we

employ the recently introduced neural quantum state ansatz
inspired by machine learning [34]. This approximates the
wave function of the system with a restricted Boltzmann
machine (RBM) which can be expressed as

ψ ¼ exp

�X
i

aiS
z
i

�YM
i¼1

2 cosh

�
bi þ

X
j

WijS
z
j

�
: ð3Þ

Here Szi ¼ �1=2 correspond to the physical spins and
fai; bi;Wijg are complex coefficients that parametrize the
many-body wave function. The number of variational
parameters is Nvar ¼ α×N2þα×NþN, with α ¼ M=N
controlling the accuracy of the ansatz. The neural network
is trained by means of variational Monte Carlo techniques
to simulate the ground state and time-dependent states of a
given lattice Hamiltonian. In particular, unitary dynamics is
addressed by employing the time-dependent variational
principle [40].
In a previous work we showed that the RBM ansatz can

reproduce the ground-state properties of Eq. (1) and the
dynamic properties under Eq. (2) with high accuracy [35].
Here we adopt a similar protocol approximating the time-
dependent change of the exchange interaction as a global
quench of Jex along e ¼ y with ΔJexðtÞ ¼ 0.1JexΘðtÞ,
where ΘðtÞ is the Heaviside function. For the short-time
dynamics considered here, this closely resembles the
square pulse protocol adopted in [35]. Our numerical
simulations always start from the ground state of Eq. (1)
and are obtained using the ULTRAFAST code [35].
Results.—According to a well-established quasiparticle

picture [41], the space-time dynamics of quantum corre-
lations after a quench is determined by the quasiparticles
excited. Therefore, to investigate the propagation of mag-
nons triggered by Eq. (2), we consider the time evolution of

CðR; tÞ ¼ hŜiðtÞ · ŜjðtÞic − hŜið0Þ · Ŝjð0Þic; ð4Þ

where hÂ B̂ic ¼ hÂ B̂i − hÂihB̂i and R ¼ ri − rj. Both the
system and the perturbation are translationally invariant and
therefore the correlation function only depends on the
relative distance R between the sites considered. Figure 1
shows different snapshots in time of the correlator CðR; tÞ
obtained with the RBM ansatz in a 12 × 12 lattice. We note
that after t ≈ 1.6=Jex the wave front reaches the lattice
boundaries and the subsequent spreading, dominated by
finite-size effects, is not considered. Figure 1 reveals a
propagation pattern arising at very small timescales with a
highly anisotropic wave front, with almost vanishing
correlations along the diagonals. The weak spreading along
the diagonals derives from an exact symmetry of CðR; tÞ
that holds in the linear response limit ΔJex ≪ Jex (see
Supplemental Material I [42]; a similar result was recently
found in [43]). In this limit, the correlation functionCðR; tÞ
is antisymmetric with respect to reflections over one of the
diagonals of the lattice. As a consequence,CðR; tÞ vanishes
when Rx ¼ �Ry. Small corrections beyond linear response
break this symmetry, yielding a slight anisotropy between x
and y axes, with finite (but small) correlations along the
diagonals consistent with the spreading patterns of Fig. 1.
In order to extract the speed of the correlation spreading,

we focus on the correlations along the x direction with
R ¼ ðRx; 0Þ. Figure 2 shows the time evolution of such
correlations in an L × L ¼ 20 × 20 system for jRxj ≤ 8,
with α ¼ 12. For this α, convergence with the number of
variational parameters is achieved. Moreover, we expect
that correlations at least up to jRxj ¼ 7 are free from finite-
size effects for the time interval considered here (see
Supplemental Material IV). Note also that due to periodic
boundary conditions and translation invariance CðR; tÞ ¼
CðLx̂ −R; tÞ up to Monte Carlo errors. Figure 2 shows

FIG. 1. (Color online) Snapshots in time of the postquench
dynamics of spin correlations in an L × L ¼ 12 × 12 system
simulated with the RBM ansatz (α ¼ 16). The figures reveal a
clear spreading of correlations, with a nontrivial wavefront
developing at ultrashort timescales. The checkerboard pattern
reflects the antiferromagnetic coupling between spins. The noise
in the correlations is due to Monte Carlo errors, and to improve
readability the colormap is clipped at �10−2.
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that, when considering correlations along one direction, a
light-cone-like spreading of correlations emerges analo-
gous to what is observed in one-dimensional systems
[41,44–47]. An estimate of the light-cone slope, which
gives the spreading speed of correlations, is obtained by
fitting the time t� at which the first extrema appear as a
function of Rx. In particular, we extract the speed from the
inverse of the slope of the fitted line, which characterizes
the velocity of correlation propagation between subsequent
positions Rx. Figure 3(a) shows the arrival times t�
averaged over positive and negative Rx (red diamonds).
The extracted velocity reveals a peculiar bending when
going from small to larger distances (jRxj > 5), and a

spreading speed of the first jRxj ≤ 5 correlations of
vðRBMÞ ¼ ð4.71� 0.13ÞJex (red solid line).
To interpret the results obtained we first turn to linear

spin wave theory (LSWT), which is expected to give an
accurate account of the correlation spreading for small
perturbations and long wavelengths. To this end, the
Hamiltonian and perturbation Eqs. (1) and (2) are
expressed in terms of Holstein-Primakoff boson operators.
Next, a Bogolyubov transformation is applied in momen-
tum space such that the resulting linear terms of Ĥ are
diagonalized. Up to constant terms this yields (t > 0)

Ĥþ δĤðtÞ ¼ 1

2

X
k

½ðωk þ δωkÞðα̂†kα̂k þ α̂−kα̂
†
−kÞ

þ Vkðα̂†kα̂†−k þ α̂kα̂−kÞ�: ð5Þ
Here ωk is the single-magnon dispersion renormalized by
the Oguchi factor Zc [48], while δωk and Vk are propor-
tional to ΔJex and depend on the details of the perturbation.
The first term describes the bare magnon spectrum, which
is renormalized due to the perturbation of Jex. The second
term is responsible for the creation and annihilation of pairs
of counterpropagating magnons. In this approximation, the
dynamics of spin correlations can be solved analytically,
yielding

CðR;tÞ¼C0ðRÞ− 1

N

X
k

Γkðeik·Rþi2ωktþeik·R−i2ωktÞ; ð6Þ

in the linear response limit ΔJex ≪ Jex, where C0ðRÞ is a
time-independent term, Γk is a time-independent factor
depending on the geometry of the system and on the
perturbation. A detailed derivation is given in Supplemental
Material II.
The spreading speed of the extrema of Eq. (6) is

extracted with the same procedure exploited for the
RBM correlations. Figure 3(b) shows the arrival times of
the first extrema of Eq. (6) versus the distance jRxj (black
circles). This is compared with the light-cone slope v2M
determined by twice the highest group velocity [41], which
in the linear response limit is v2M ¼ 2½ðdωkÞ=ðdkÞ�jk¼0 ≈
3.28Jex (dashed black line). We note that the latter also
equals twice the highest phase velocity ½ð2ωkÞ=ðkxÞ�jk¼0,
which instead determines the spreading speed of the first
extrema [47]. The LSWT results demonstrate that the RBM
ansatz yields higher spreading speeds at small times and
distances, vðRBMÞ being more than 40% higher than the
corresponding LSWT speed. Interestingly, the RBM
spreading speed at jRxj > 5 decreases down to the expected
two-magnon velocity as it appears in Fig. 3(a). We refer to
the initial regime as supermagnonic, since the spreading
speed of the correlations is much higher than obtainable
from the single-magnon dispersion.
To qualitatively assess the effect of magnon-magnon

interactions beyond the Oguchi correction, we consider a

FIG. 2. (Color online) Time evolution of spin correlations
jCðR; tÞj as a function of the distance Rx in an L×L¼20×20
system. A light-cone-like spreading of correlations appears in
agreement with the locality of Ĥþ δĤ. Results are obtained with
the RBM ansatz using α ¼ 12.

FIG. 3. (Color online) Arrival times t� of the first extrema of
CðR; tÞ. (a) RBM data (red diamonds) compared with the highest
magnon group velocity v2M (black dashed line). (b) Comparison
between SBMFT (blue squares) and LSWT (black circles). Solid
red (blue) line: fit of the jRxj ≤ 5 arrival times of the RBM
(SBMFT) correlations. To improve readability, the SBMFT data
have been shifted in time by þ1=Jex. The RBM points are
calculated for L × L ¼ 20 × 20 (α ¼ 12), while the LSWT and
SBMFT data refer to an L × L ¼ 140 × 140 system, where finite-
size convergence is found.
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SBMFT approximation of the 2D Heisenberg Hamiltonian
[49,50]. This provides an exact solution of the SUðnÞ
generalization of the Heisenberg Hamiltonian in the limit
n → ∞, in which magnon-magnon interactions remain
finite. In addition, opposed to LSWT, SBMFT does not
assume a symmetry broken ground state.
Results for the correlation spreading within SBMFT

are shown in Fig. 3(b) (blue squares), where the linear
response dynamics is considered within the Zubarev
formalism [51–53]. These results reveal an enhancement
of the spreading speed of the first jRxj ≤ 5 correlations
similar to what is obtained with the RBM ansatz and a
speed vðSBMFTÞ ¼ ð4.06� 0.24ÞJex (blue solid line).
Our calculations show that the SBMFT exhibits two
features. Besides propagating modes closely resembling
noninteracting two-magnon pairs, an additional quasi-
bound state of two spin-flip excitations appears (see
Supplemental Material III), similar to what is obtained
with other interacting magnon theories [19–21]. The latter
dominates the spectrum at small wavelengths, decreasing
the frequency of the two-magnon peak as compared to
twice the frequency of zone-edge magnons. These two
spin-flip excitations are well known from Raman spectros-
copy, since the short-range correlations dominate the
Raman spectrum. The supermagnonic propagation, how-
ever, is a nontrivial effect arising from the interplay
between the quasibound state and the propagating magnon
pairs. At short distances, the decrease in frequency delays
the arrival time of the maxima in Fig. 3(b). This delay
rapidly reduces with distance, causing a crossover regime at
enhanced speed, recovering the noninteracting propagation
speed at large distances. In a semiclassical picture, this
supermagnonic regime can therefore be understood as sub-
ballistic propagation of quasiparticles, which only interact
when being in close vicinity to each other. As they
propagate, the interaction strength decreases and the
quasiparticles enter a ballistic regime consistent with the
noninteracting two-magnon light cone. We emphasize that
SBMFT also encompasses the Oguchi correction that
renormalizes the single-magnon spectrum due to mag-
non-magnon interactions in LSWT. Hence, the appearance
of the quasibound state results from magnon-magnon
interactions between magnon pairs, and goes beyond the
Oguchi correction of the single-magnon spectrum.
Within SBMFT, we can further tune the strength of

magnon-magnon interactions by varying the spin value S.
We find that as S increases towards the classical limit
S → ∞, the result converges to that of LSWT (see
Supplemental Material III). This shows that the signifi-
cance of the supermagnonic spreading scales with the
importance of quantum fluctuations. Overall, the
SBMFT results suggest that the RBM data feature extraor-
dinary strong magnon-magnon interactions, beyond what
can be expected from standard interacting magnon-
theories. This analysis is also consistent with the fact that

standard interacting magnon theory fails to fully reproduce
the exact frequency and width of the spontaneous Raman
spectrum of S ¼ 1=2 antiferromagnets in 2D [20,22,35,54].
To conclude this section, we comment on the possible

experimental verification of the supermagnonic correlation
spreading. An interesting material class is the spin-1=2
antiferromagnets comprising copper ions, such as La2CuO4

[23,25,55] and CuðDCOOÞ2 · 4D2O (CFTD) [24,30]. For
example, in CFTD the dominant nearest neighbor
exchange is Jex ¼ 6.19 meV. Hence, the fastest two-
magnon oscillation period is T ¼ h=Emax ≈ 160 fs, where
the upper bound for Emax ¼ 2Zcℏωmaxðz − 1Þ=z (z being
the lattice coordination number) is estimated from
interacting magnon theory [20], using the single-magnon
energy ℏωmax ≈ 15 meV [24]. With a nearest-neighbor
distance a ¼ 5.74 Å, the supermagnonic velocity is
v ≈ 4aJex=ℏ ∼ 20 km=s, and therefore the required exper-
imental resolution is in the nanometer length scale and
femtosecond timescale. This is in reachwith femtosecond x-
ray diffraction techniques, in particularwhen combinedwith
transient gratings [56–59]. Moreover, the enhanced spread-
ing speed is also present in systems with higher spin, for
example, S ¼ 1 which enriches the class of materials to
fluorides [16–18].
Conclusion.—In this work we predicted that magnons

in two dimensions can propagate with a velocity that is up
to 40% higher than the highest magnon velocity. This
supermagnonic speed stems from extraordinary strong
magnon-magnon interactions and might be corroborated
by femtosecond x-ray free electron laser experiments with
nanometer resolution. Future works might also focus on
studying the spreading pattern in detail, both by consid-
ering different excitation geometries in the square lattice
and by investigating different lattices, such as honeycomb
systems. The latter feature even larger quantum fluctuations
due to the lower coordination number z [60,61] and hence
may therefore exhibit an enhanced supermagnonic regime.
Furthermore, it will be interesting to gain insight into the
role of fractionalized spin excitations [30,31] and magnon-
Higgs scattering [28,29] on the space-time propagation of
magnon pairs. Moreover, such propagation is generally
accompanied by a linear growth of entanglement [41]. How
this is affected by magnon-magnon interactions is currently
under investigation.

This work is part of the Shell-NWO/FOM-initiative
“Computational sciences for energy research” of Shell
and Chemical Sciences, Earth and Life Sciences,
Physical Sciences, FOM and STW, and received funding
from the European Research Council ERC grant agreement
No. 856538 (3D-MAGiC). Part of this work was carried out
on the Dutch national e-infrastructure with the support of
SURF Cooperative.

Note added in the proof.—After completion of our manu-
script we became aware of the following work [43], in
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which the same spatial asymmetry in the spin correlations
was found as we show in Fig. 1. Due to the smaller system
size, the supermagnonic effect could not be resolved in
that study.
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