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We have performed density-matrix renormalization group studies of a square lattice t-J model with small
hole doping, δ ≪ 1, on long four and six-leg cylinders. We include frustration in the form of a second-
neighbor exchange coupling, J2 ¼ J1=2, such that the undoped (δ ¼ 0) “parent” state is a quantum spin
liquid. In contrast to the relatively short range superconducting (SC) correlations that have been observed in
recent studies of the six-leg cylinder in the absence of frustration, we find power-law SC correlations with a
Luttinger exponent, KSC ≈ 1, consistent with a strongly diverging SC susceptibility, χ ∼ T−ð2−KSCÞ as the
temperature T → 0. The spin-spin correlations—as in the undoped state—fall exponentially suggesting
that the SC “pairing” correlations evolve smoothly from the insulating parent state.
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Although the physics of cuprate high temperature super-
conductors is surely complex, there are a variety of reasons
[1–3] to believe that the “essential” [4] physics is captured
by the two-dimensional (2D) Hubbard model or its close
relatives. To begin with, as is the case in cuprates, in an
appropriate regime of parameters, the Hubbard model on a
square lattice with n ¼ 1 electrons per site exhibits an
undoped “parent” state that is a Mott insulating antiferro-
magnet. However, two key theoretical issues concerning
this proposition remain unsettled: (1) Does d-wave super-
conductivity (SC) “robustly” arise in this model upon light
doping, i.e., for 0 < δ≡ ð1 − nÞ ≪ 1? (2) If so, how does it
arise (i.e., what is the “mechanism”) and under what
circumstances (e.g., does it depend on specific features
of the band structure)?
For parametrically small values of the Hubbard U ≪ W

(where W is the bandwidth), it is possible to establish [5]
that such a superconducting state arises, but here (except
under extremely fine-tuned circumstances in which
the Fermi surface is perfectly nested) the undoped state
at n ¼ 1 is also superconducting, and the superconducting
Tc is exponentially small in units of W. For intermediate
U ∼W, no controlled analytic approach exists, but calcu-
lations based on a variety of physically motivated approx-
imations [6–8] yield results suggestive of values of Tc as
large as Tc ∼W [where the proportionality is a number of
order 1 but may be small, e.g., ∼ð2πÞ−2]. This was further
supported by density-matrix normalization group (DMRG)
studies of the Hubbard and t-J models on four-leg square
cylinders [9–13]. However, recent [14] DMRG calculations
on six-leg square cylinders, as well as variational
Monte Carlo [15] calculations on 2D models, have called

this proposition into question. Specifically, the tendency of
a doped antiferromagnet to phase separation [15,16] or to
charge-density wave (CDW) formation [11,13,14,17–21]
appears to play a much more dominant role in the physics
at small δ than accounted for by most approximate
approaches.
One attractive notion that was suggested early on is that

high temperature superconductivity could arise naturally
[1,22–27] under circumstances in which the insulating
parent state is a quantum spin liquid (QSL) rather than
an ordered antiferromagnet. In particular, a QSL with a gap
(even a partial gap with nodes), can in some sense be
thought of as a state with preexisting Cooper pairs but with
vanishing superfluid stiffness. Then, upon light doping, one
might naturally expect SC with a gap scale that is inherited
from the QSL (i.e., evolves continuously as δ → 0) and
with a superfluid stiffness—that rises with δ.
In the present Letter, we explore the possibility of SC in a

doped spin liquid using DMRG to treat the t-J model (a
proxy for the Hubbard model) on cylinders of circum-
ference 4 and 6. A number of studies of the spin-1=2
Heisenberg model on the square lattice with first and
second neighbor exchange couplings, J1 and J2, have
led to a consensus [28–35] that there is a QSL phase in
the range of 0.46 < J2=J1 < 0.52 [35]. In this range,
DMRG on cylinders of circumference up to Ly ¼ 10 show
a pronounced spin-gap and exponentially falling spin-spin
correlations with a correlation length ξs considerably
smaller than Ly [30,32]. However, there is still some debate
about whether this gap persists in the 2D limit, or if instead
the QSL phase has a gapless nodal spinon spectrum.
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Here, we study the model with J2=J1 ¼ 0.5, and
correspondingly we take the ratio of nearest to next-nearest
neighbor hopping matrix elements, t2=t1 ¼ 0.7 ≈

ffiffiffiffiffiffiffiffiffiffiffiffi
J2=J1

p
,

and a value of J1=t1 ¼ 1=3 corresponding loosely to a
value of U ≈ 4t2=J ¼ 12t. On the cylinders we study, the
undoped system is fully gapped, so it effectively corre-
sponds to a compactified version of a gapped Z2 spin liquid
of the sort that arises in the quantum dimer model [36,37]
and the toric code model [38]. Upon lightly doping we find
a state which still shows exponentially falling spin-spin
correlations, with correlation lengths that are longer than
but of the same order as in the undoped system. Most
importantly, we find that even at the smallest δ and on our
largest six-leg cylinders, the SC correlations are strong and
decay with a slow power law, ∼jrj−KSC , with KSC ≈ 1. This
slow decay implies a SC susceptibility that diverges as
χSC ∼ T−ð2−KSCÞ as T → 0. As far as we know, to date, this
is the strongest indication of SC that has been found in any
DMRG study of a system on the square lattice of width
Ly > 4. Moreover, the SC correlations dominate over the
CDW correlations in the sense that in all cases Kc > KSC.
This is suggestive that SC order is realized in the 2D limit,
although given that in all cases the CDW correlations are
substantial, this inference remains speculative.
Model and method.—We employ DMRG [39] to study

the ground state properties of the hole-doped t-J model on
the square lattice, which is defined by the Hamiltonian

H ¼ −
X
ijσ

tijðĉ†iσ ĉjσ þ H:c:Þ þ
X
ij

Jij

�
S⃗i · S⃗j −

n̂in̂j
4

�
:

Here ĉ†iσ (ĉiσ) is the electron creation (annihilation) operator
on site i ¼ ðxi; yiÞ with spin polarization σ, S⃗i is the spin
operator, and n̂i ¼

P
σ ĉ

†
iσ ĉiσ is the electron number oper-

ator. The electron hopping amplitude tij is equal to t1 (t2) if
i and j are nearest neighbor (NN) and (NNN) sites. J1 and
J2 are the spin superexchange interactions between NN and
NNN sites, respectively. The Hilbert space is constrained
by the no-double occupancy condition, ni ≤ 1. At half-
filling, i.e., ni ¼ 1, H reduces to the spin-1=2 antiferro-
magnetic J1-J2 Heisenberg model.
We take the lattice geometry to be cylindrical with

periodic and open boundary conditions in the ŷ and x̂
directions, respectively. Here ŷ ¼ ð0; 1Þ and x̂ ¼ ð1; 0Þ are
the two basis vectors of the square lattice. Here, we focus
on cylinders with width Ly and length Lx, where Lx and Ly

are the number of sites along the x̂ and ŷ directions,
respectively. The total number of sites is N ¼ Lx × Ly, the
number of electrons Ne, and the doping level of the system
is defined as δ ¼ Nh=N, where Nh ¼ N − Ne is the
number of doped holes relative to the half-filled insulator
with Ne ¼ N. In the present study, we focus on Ly ¼ 4

cylinders of length up to Lx ¼ 128 and Ly ¼ 6 cylinders of
length up to Lx ¼ 48, and for values of δ ¼ 1=18, 1=16,

and 1=12. We set J1 ¼ 1 as an energy unit and J2 ¼ 0.5
such that the undoped system is deep in the QSL
phase at half-filling [28,30,32,35]. We consider t1 ¼ 3

and t2 ¼ t1
ffiffiffiffiffiffiffiffiffiffiffiffi
J2=J1

p
to make a connection to the corre-

sponding Hubbard model. We perform up to 90 sweeps and
keep up to m ¼ 10 000 states for Ly ¼ 4 cylinders with a
typical truncation error ϵ < 10−7, and up to m ¼ 40 000
states for Ly ¼ 6 cylinders with a typical truncation error
ϵ < 10−6. Further details of the numerical simulation are
provided in the Supplemental Material (SM) [40].
Superconducting pair-field correlations.—We have cal-

culated the equal-time spin-singlet SC pair-field correlation
function

ΦαβðrÞ ¼
1

Ly

XLy

y¼1

jhΔ†
αðx0; yÞΔβðx0 þ r; yÞij: ð1Þ

Δ†
αðx; yÞ ¼ ð1= ffiffiffi

2
p Þ½ĉ†ðx;yÞ;↑ĉ†ðx;yÞþα;↓ þ ĉ†ðx;yÞþα;↑ĉ

†
ðx;yÞ;↓� is

the spin-singlet pair creation operator on bond α ¼ x̂ or
ŷ, where ðx0; yÞ is a reference bond taken as x0 ∼ Lx=4 and
r is the displacement between bonds in the x̂ direction.
Figure 1 shows ΦyyðrÞ for both Ly ¼ 4 and Ly ¼ 6

cylinders at different doping levels. At long distance, ΦðrÞ
is characterized by a power law with the appropriate
Luttinger exponent KSC defined by
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FIG. 1. Superconducting pair-field correlations ΦyyðrÞ on
double-logarithmic scales for (a) Ly ¼ 4 cylinders at δ ¼ 1=12
and δ ¼ 1=16, and (b) Ly ¼ 6 cylinders at δ ¼ 1=12 and
δ ¼ 1=18. r is the distance between two Cooper pairs in the x̂
direction. The dashed lines denote power-law fitting to
ΦyyðrÞ ∼ r−KSC .
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ΦðrÞ ∼ r−KSC : ð2Þ

The exponent KSC, which is obtained by fitting the
results using Eq. (2), is KSC ¼ 1.08ð4Þ for δ ¼ 1=12 and
KSC ¼ 0.95ð2Þ for δ ¼ 1=16 on Ly ¼ 4 cylinders, and
KSC ¼ 1.26ð7Þ for δ ¼ 1=12 and KSC ¼ 1.14ð5Þ for δ ¼
1=18 on Ly ¼ 6 cylinders. This establishes that the lightly
doped QSL on both Ly ¼ 4 and Ly ¼ 6 cylinders has
quasi-long-range SC correlations. In addition toΦyyðrÞ, we
have also calculated components of the tensor—ΦxxðrÞ and
ΦxyðrÞ—and find that ΦxxðrÞ ∼ΦyyðrÞ ∼ −ΦxyðrÞ. In
short, the SC correlations have a d-wave form.
CDW correlations.—To measure the charge order, we

define the rung density operator n̂ðxÞ ¼ L−1
y

PLy

y¼1 n̂ðx; yÞ
and its expectation value nðxÞ ¼ hn̂ðxÞi. Figure 2(a) shows
the charge density distribution nðxÞ for Ly ¼ 4 cylinders,
which is consistent with “half-filled charge stripes” with
wavelength λ ¼ 1=2δ. This corresponds to an ordering
wave vector Q ¼ 4πδ corresponding to half a doped hole
per 2D unit cell, i.e., viewing the cylinder as a 1D system,
two holes per 1D unit cell. The charge density profile nðxÞ
for Ly ¼ 6 cylinders is shown in Fig. 2(b), which
has wavelength λ ¼ 1=3δ, consistent with “third-filled”
charge stripes. This corresponds to an ordering wave vector
Q ¼ 6πδ and one third of a doped hole per 2D unit cell—
again corresponding to two holes per 1D unit cell.
At long distance, the spatial decay of the CDW corre-

lation is dominated by a power law with the Luttinger
exponent Kc. The exponent Kc can be obtained by fitting

the charge density oscillations (Friedel oscillations)
induced by the boundaries of the cylinder [43]

nðxÞ ¼ n0 þ AQ � cosðQxþ ϕÞx−Kc=2: ð3Þ

Here AQ is an amplitude, ϕ is a phase shift, n0 ¼ 1 − δ is
the mean density, andQ ¼ 4πδ. Note that a few data points
[Figs. 2(a) and 2(b), light grey color] are excluded to
minimize the boundary effect and improve the fitting
quality. The extracted exponents for Ly ¼ 4 cylinders are
Kc ¼ 1.29ð3Þ when δ ¼ 1=12 and Kc ¼ 1.37ð3Þ when
δ ¼ 1=16. For Ly ¼ 6 cylinders, Kc ¼ 1.42ð5Þ when
δ ¼ 1=12 and Kc ¼ 1.55ð5Þ when δ ¼ 1=18. Similarly,
Kc can also be obtained from the charge density-density
fluctuation correlation which gives qualitatively consistent
results (see SM).
Spin-spin correlations.—To describe the magnetic prop-

erties of the ground state, we calculate the spin-spin
correlation functions defined as

FðrÞ ¼ 1

Ly

XLy

y¼1

jhS⃗x0;y · S⃗x0þr;yij: ð4Þ

Figure 3 shows FðrÞ for Ly ¼ 6 cylinders at different
doping levels, which decays exponentially as FðrÞ ∼ e−r=ξs
at long distances, with a correlation length ξs ¼ 3.98ð1Þ
lattice spacings for δ ¼ 1=12 and ξs ¼ 3.06ð2Þ lattice
spacings for δ ¼ 1=18. For comparison, the spin-spin
correlation FðrÞ at half-filling, i.e., δ ¼ 0, is also shown,
which decays exponentially with a correlation length
ξs ¼ 1.42ð1Þ. Therefore, the spin-spin correlations at finite
doping levels are short ranged and similar to those of the
QSL at half-filling. In the inset of Fig. 3, we show the spin
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FIG. 2. Charge density profiles nðxÞ for (a) Ly ¼ 4 cylinders at
δ ¼ 1=12 and δ ¼ 1=16, and (b) Ly ¼ 6 cylinders at δ ¼ 1=12
and δ ¼ 1=18. The exponent Kc is extracted using Eq. (3), with
the data points in grey neglected to minimize boundary effects.
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FIG. 3. Spin-spin correlations FðrÞ for Ly ¼ 6 cylinders at
δ ¼ 0, δ ¼ 1=12 and δ ¼ 1=18 on the semilogarithmic scale.
Dashed lines denote exponential fit FðrÞ ∼ e−r=ξs , where r is the
distance between two sites in the x̂ direction. Inset: spin gap Δs
for Ly ¼ 6 cylinders at δ ¼ 0 and δ ¼ 1=12. Solid lines denote
second-order polynomial fitting.
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gap, defined as Δs ¼ E0ðSz ¼ 1Þ − E0ðSz ¼ 0Þ, where
E0ðSzÞ is the ground state energy of a system with total
spin Sz. At half-filling, i.e., δ ¼ 0, Δs ¼ 0.40ð1Þ which is
consistent with previous studies [30,32]. At δ ¼ 1=12,
Δs ¼ 0.24ð1Þ, which is consistent with the short-range
nature of FðrÞ.
Single particle Green function.—We have also calculated

the single-particle Green function, defined as

GðrÞ ¼ 1

Ly

XLy

y¼1

hc†ðx0;yÞ;σcðx0þr;yÞ;σi: ð5Þ

Figure 4 shows GðrÞ for both Ly ¼ 4 and Ly ¼ 6 cylinders
at different doping levels, the long distance behavior of
G is consistent with exponential decay GðrÞ ∼ e−r=ξG.
The extracted correlation lengths for Ly ¼ 4 cylinders
are ξG ¼ 30ð2Þ when δ ¼ 1=12 and ξG ¼ 18ð1Þ when
δ ¼ 1=16, while for Ly ¼ 6 cylinders, ξG ¼ 21ð1Þ when
δ ¼ 1=12 and ξG ¼ 20ð2Þ when δ ¼ 1=18.
We have also measured the hole momentum distribution

function defined as

nhðkÞ ¼ 1

2

�
2 −

X
σ

nσðkÞ
�
: ð6Þ

Here nσðkÞ ¼ ð1=NÞPij e
ik·ðri−rjÞhĉ†iσ ĉjσi is the electron

momentum distribution function for an electron with

spin-σ. Figure 5 shows nhðkÞ for both Ly ¼ 4 and Ly ¼
6 cylinders at different doping levels. Not surprisingly,
there are no clear discontinuities in nhðkÞ of the sort that
would be expected at the Fermi momenta of a Fermi liquid.
However, there are sharp drops in nhðkÞ (which can be

identified as maxima of jdnhðkÞ=dkxj) (see SM for details)
that are suggestive of the “near existence” of a Fermi
surface. These features are most prominent for ky ¼ 0,
where they occur at kx ≈ π � k0, but there are slightly
broader features of the same general sort for ky ¼ π, at
kx ¼ �kπ. For Ly ¼ 4 and δ ¼ 1=16, k0 ¼ 0.075π and
kπ ¼ 0.175π; for Ly ¼ 4 and δ ¼ 1=12, k0 ¼ 0.175π
and kπ ¼ 0.192π; for Ly ¼ 6 and δ ¼ 1=18, k0 ¼ 0.17π
and kπ ¼ 0.18π; for Ly ¼ 6 and δ ¼ 1=12, k0 ¼ 0.25π and
kπ ¼ 0.25π. Within the numerical uncertainty, there is a
direct relation between these quasi-Fermi momenta and the
CDW ordering vector: Q ¼ 2ðk0 þ kπÞ. Moreover, since
Q ¼ πLyδ, this corresponds to the expected value of 2kF
that would correspond to the “volume” of the Fermi surface
under conditions (not satisfied in the present case) in which
Luttinger’s theorem applies.
Conclusion.—There is necessarily a speculative leap

from results on finite cylinders to the 2D limit.
However, we feel that the present results—and those of
a similar study by one of us on the triangular lattice t-J
model on four- and six-leg cylinders [44,45]—can plau-
sibly be taken as representative of the solution of the
corresponding 2D problem. In particular, they support the
proposition that SC can emerge upon light doping of a
QSL [46].
Conversely, our earlier observation of an insulating

holon crystal in a lightly doped Kagome system [47,48]
and CDW order in a lightly doped honeycomb Kiatev spin
liquid [49] imply that SC is not the universal result of
doping a QSL. Indeed, for otherwise identical cylinders to
those reported above, reversing the sign of t2 (i.e., taking
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line denote exponential fitting GðrÞ ∼ e−r=ξG where r is the
distance between two sites in the x̂ direction.

0.0 0.5 1.0 1.5 2.0
0.4

0.6

0.8

0.0 0.5 1.0 1.5 2.0
0.4

0.6

0.8

0.0 0.5 1.0 1.5 2.0
0.4

0.6

0.8

0.0 0.5 1.0 1.5 2.0
0.4

0.6

0.8

k =0

k =π/2

k =π

(a) L =4, δ=1/12

nh (k
x,

k y
)

kx(π)

(b) L =4, δ=1/16 k =0

k =π/2

k =π

nh (k
x,

k y
)

kx(π)

nh (k
x,

k y
)

kx(π)

k =0

k =π/3

k =2π/3

k =π

(c) L =6, δ=1/12 (d) L =6, δ=1/18 k =0

k =π/3

k =2π/3

k =π

nh (k
x,

k y
)

kx(π)

FIG. 5. Hole momentum distribution function nhðkx; kyÞ for
Ly ¼ 4 cylinders at (a) δ ¼ 1=12 and (b) δ ¼ 1=16, and Ly ¼ 6

cylinders at (c) δ ¼ 1=12 and (d) δ ¼ 1=18 at different ky as a
function of kx in unit of π.

PHYSICAL REVIEW LETTERS 127, 097002 (2021)

097002-4



t2 ¼ −t1
ffiffiffiffiffiffiffiffiffiffiffiffi
J2=J1

p
) reduces the long distance SC correla-

tions by many orders of magnitude although whether some
weak SC power-law correlations persist is still unsettled.
Moreover, we have also found greatly enhanced SC
correlations on four- and six-leg cylinders with a spatially
modulated (“striped”) version of the square-lattice Hubbard
model [50]; it thus may be aspects of doping a quantum
paramagnet (i.e., a system in which quantum fluctuations
are sufficient to destroy magnetic order) rather than specific
features of a doped QSL that are responsible for the strong
SC tendencies.
It is harder still to make inferences about Tc itself in the

2D limit. The large values of the spin gaps, Δs ∼ J=4, are
suggestive that pairing is sufficiently strong to persist to
very high T. It is therefore likely that Tc is determined by
the phase ordering scale [51], in other words that the zero
temperature superfluid stiffness and hence Tc itself rise
roughly linearly with δ for δ ≪ 1 [22].
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Note added.—We have become aware of two independent
but closely related DMRG studies of the t-t0-J model
by Gong, Zhu, and Sheng [52] (GZS) and Jiang, Scalapino,
and White [53] (JSW). Both report results for
six-leg cylinders, while JSW also have results for
eight-leg cylinders. Both studies investigated t0 in the
range 0 ≤ t0 ≤ 0.3t—i.e., neither include the large value
t0 ¼ t=

ffiffiffi
2

p
studied here. JSW also studied negative t0—the

sign that is thought to be relevant to the hole-doped
cuprates—in the range −0.3t ≤ t ≤ 0. Overall, the two
papers agree that increasing (positive) t0 tends to increase
the tendency to d-wave SC order and decrease the tendency
to various sorts of competing SDWand CDWorders, which
also correlates well with our observations at larger t0.
Conversely, JSW find that negative t0 strengthens stripe
order and depresses SC order, consistent with our already
mentioned failure to find strong SC tendencies for
t0 ¼ −t=

ffiffiffi
2

p
. One should notice, however, that there are

significant differences in other aspects of the inferred phase
diagrams reported by GZS and JSW—which likely reflects
the delicate nature of the phase competition between
multiple phases that occurs in the range of t0 and doping
they have explored.
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