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Haining Pan and Sankar Das Sarma
Condensed Matter Theory Center and Joint Quantum Institute, Department of Physics, University of Maryland,

College Park, Maryland 20742, USA

(Received 16 December 2020; accepted 2 August 2021; published 24 August 2021)

Using a realistic band structure for twisted WSe2 materials, we develop a theory for the interaction-
driven correlated insulators to conducting metals transitions through the tuning of the filling factor around
commensurate fractional fillings of the moiré unit cell in the 2D honeycomb lattice, focusing on the
dominant half-filled Mott insulating state, which exists for both long- and short-range interactions. We find
metallic states slightly away from half-filling, as have recently been observed experimentally. We discuss
the stabilities and the magnetic properties of the resulting insulating and metallic phases, and comment on
their experimental signatures. We also discuss the nature of the correlated insulator states at the rational
fractional fillings.
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The Fermi liquid (FL) theory is the most successful
paradigm in condensed matter physics asserting that an
interacting many-fermion system in dimensions higher than
one (e.g., metals, normal He-3) has a bijection with the
noninteracting Fermi gas. The low-energy quasiparticle
excitations of the interacting Fermi system behave as
almost noninteracting excitations of the Fermi gas with
renormalized properties such as the effective mass. Awell-
known simple exception to the FL paradigm was pointed
out by Wigner rather early [1] where he showed that strong
long-range Coulomb interactions, would crystallize a
continuum electron gas, creating a Wigner crystal (WC)
of electrons, so that the Coulomb potential energy of the
electrons is minimized instead of the kinetic energy as in
the noninteracting or the weakly interacting system.
Obviously, the WC is not a FL. Later, Mott [2] argued
that interacting band electrons in a lattice would undergo
correlation-driven metal to insulator transition for strong
enough interactions. The Mott transition is adiabatically
connected to the Wigner transition [3,4]. The concept of
Mott transition evolved over time eventually, becoming a
sharply defined paradigm as the Mott-Hubbard (MH)
metal-insulator transition (MIT) [5]. The modern view of
the MH transition [6–8] involves the correlation-driven
MIT at the half-filling of a narrow tight-binding band with
the electrons being localized at lattice sites as local
magnetic moments in an antiferromagnetic insulating
(AFI) state. Such an AFI state, existing precisely at the
half-filling of the original noninteracting band, is called a
Mott insulator (MI), and it arises from the strong short-
range interactions present in the Hubbard model preventing
the double occupancy of lattice sites, thus creating a purely
on-site interaction driven insulating state. Such a MI is
quite distinct from the WC in three specific ways: (1) it
is independent of the electron density, and does not

necessitate a low-density electron system as the WC
requires; (2) it arises purely from short-range correlation
effects in contrast to the WC arising from the long-range
Coulomb interaction; (3) the MI happens precisely at the
half-filling of the noninteracting band with the average
inter-electron separation being equal to the effective lattice
constant (i.e., one electron per unit cell). Although both the
WC and MI are interaction-driven insulators, the MI is
ubiquitous in strongly correlated narrow band systems [9]
whereas the pure WC is rarely experimentally observed
[10]. The current work studies the interplay between WC
and MI phenomena driving (MIT) in the context of actual
experiments in twisted 2D moiré systems based on van der
Waals materials [11–21]. In particular, our focus is on the
physics of the filling close to half, where a metallic state
could exist at small doping away from the half-filled MI
state. Such correlated metallic states themselves are inter-
esting in addition to the considerable interest in the physics
of MIT.
Recent experiments have identified correlated insulating

states in twisted transition metal dichalcogenides (TTMDs)
based moiré 2D systems at filling factors ν ¼ 1; 3=4; 2=3;
1=2; 1=3; 1=4, etc. [11–17], where ν denotes the number of
holes per moiré unit cell. In TTMD moiré systems, strong
spin-orbit coupling produces doubly degenerate flat hole
bands with narrow effective bandwidth leading to strong
correlation effects as the kinetic energy is exponentially
suppressed. In addition to the filling factor ν, the system has
two other tuning parameters affecting correlation effects:
the twist angle θ determining the moiré unit cell size and
the effective dielectric constant ϵ determining the Coulomb
coupling as defined by e2=ðϵrÞ where r is the interparticle
distance. θ defines the moiré band structure, and ϵ defines
the Coulomb coupling strength whereas ν defines the band
filling.

PHYSICAL REVIEW LETTERS 127, 096802 (2021)

0031-9007=21=127(9)=096802(5) 096802-1 © 2021 American Physical Society

https://orcid.org/0000-0002-8685-5717
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.127.096802&domain=pdf&date_stamp=2021-08-24
https://doi.org/10.1103/PhysRevLett.127.096802
https://doi.org/10.1103/PhysRevLett.127.096802
https://doi.org/10.1103/PhysRevLett.127.096802
https://doi.org/10.1103/PhysRevLett.127.096802


We start with a MI at ν ¼ 1, and investigate if correlated
metallic states could exist in its neighborhood, as has
recently been observed in transport measurements [11]. We
note that the phase diagram of the TTMDs at fixed rational
fillings has recently been calculated [22] and experimen-
tally studied [15,17]. The insulating states arising at various
fractions (e.g., ν ¼ 1=3, 1=2, etc.) are neither strict MI nor
strict WC. They are best described as correlated insulators
(CIs). They are Mott-like because they are commensurate
with the moiré lattice and are thus connected to the band
physics, but they are Wigner-like because their existence,
except for the ν ¼ 1 (MI), depends on long-ranged
Coulomb potential. These are all CIs specific to moiré
systems, which are neither a MI nor WC.
The realistic interacting tight-binding Hamiltonian for

TTMD-based moiré systems is [22,23]

H ¼
X

s

X

i;j

tsðRi − RjÞc†i;scj;s

þ 1

2

X

s;s0

X

i;j

UðRi − RjÞc†i;sc†j;s0cj;s0ci;s; ð1Þ

where the hopping terms ts represent band structures
(depending on θ), and effective interparticle Coulomb
interactions U represent the correlation effect (depending
on ϵ). Valley index s, spin-up or down, is coupled with þK
or−K valley, respectively, in the Brillouin zone [23]. Both t
and U involve distant nearest neighbors (i.e., our para-
metrization of Eq. (1) includes hopping up to the third
nearest neighbors and Coulomb coupling term U up to
1993 distant sites), refer to Refs. [22–25] for the motivation
and derivation of Eq. (1) as the basic description for the
interacting moiré physics in TTMD systems. Although the
theory based on Eq. (1) should apply to all TTMD systems,
our specific numerical results are for the WSe2 based
TTMD structures currently being studied at Columbia
University [11]. Details of the numerical model for
Eq. (1) are available in Refs. [22] and [23]. We emphasize
that Eq. (1) cannot be thought of as either a Hubbard (or
extended Hubbard) model or a WC (or generalized WC)
model. Equation (1) is a semirealistic model for the actual
interacting TTMD 2D moiré materials.
The 2D interacting problem in Eq. (1) is well defined,

once all the hopping terms t and interaction terms U, along
with the filling factor ν, are known. Obviously, the problem
is insoluble exactly: the fermion sign problem and the 2D
nature of the system make quantum Monte Carlo or exact
diagonalization impossible. When the first term in Eq. (1) is
zero, the problem has an exact classical solution which is
obtained by minimizing the Coulomb energy (i.e., the
second term). The exact classical solution for t ¼ 0
depends on the precise ν since the lattice symmetry of
the classical state depends on ν. Our strategy, as explained
in Refs. [22] and [23], is to use a self-consistent mean-field
(SCMF) theory starting with the classical WC solution as

the initial input to obtain the final ground state of Eq. (1) in
the presence of the hopping term. This is a reasonable
strategy to search for CI ground states at rational fillings in
the presence of strong interactions. It is possible that our
theory overestimates the importance of non-FL correlated
insulating states over FL conducting metallic states, which
is acceptable since the problem is interesting only because
of the breakdown of FL theory in the interacting system
leading to the insulating states, which are absent (except
trivially at band filling, ν ¼ 2) in the tight-binding problem
without interactions. For small deviations in ν around a
rational filling, one can study the possible emergence of
correlated metallic states by using a perturbation theory
around the mean-field solution. Our current work is
qualitatively different from earlier work since we are
dealing here with metallic ground states in contrast to
insulating ground states in [22,23].
In Fig. 1, we show the calculated quantum phase diagram

for the ν ¼ 1 half-filled state in the θ − ϵ space for the full
long-range interaction with all distant neighbor Coulomb
couplings as well as the effective Hubbard model keeping
only the on-site U. The two phase diagrams are almost
identical (except for some small quantitative differences),
with an AFI state being the dominant phase except at large
ϵ (i.e., weak interaction) and large θ (i.e., strong hopping)
where the paramagnetic normal metallic (NM) FL shows
up. This ν ¼ 1 AFI is the well-known MI phase. We
emphasize that Fig. 1, manifesting a similar MI to NM
transition for both long-range and on-site interaction
models, serves as an important check on our theory. The
fact that the theory reproduces the correct MI at ν ¼ 1
irrespective of whether the interaction is long-ranged
Coulomb or short-ranged Hubbard establishes the correct
qualitative reliability of the theory.
Having established the model and its validity in predict-

ing the correct MI at ν ¼ 1, we now consider the main
thrust of this Letter: filling-induced MIT in the flatband
moiré system. We must distinguish among three distinct
types of MIT predicted by the solutions to Eq. (1) in the

AFI

NM

AFI

NM(a) (b)

FIG. 1. The calculated phase diagram in the ϵ-θ space at ν ¼ 1
for (a) all distant neighbor Coulomb couplings, and (b) only the
on-site U.
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moiré system. First, there are two types of correlation-
driven MITs for fixed ν, tuned respectively by ϵ and θ, as
apparent in Fig. 1. Increasing ϵ suppresses interaction and
increasing θ increases the effective bandwidth, so tuning
either ϵ or θ is an essentially equivalent way of changing the
dimensionless interaction strength “U=t,” although, unlike
in the simple Hubbard model, both U and t are represented
by many effective parameters in Eq. (1) instead of a single
parameter. Similar correlation-tuned ϵ-θ phase diagrams are
provided in Refs. [22,23] for ν ¼ 3=4; 2=3; 1=2; 1=3; 1=4.
We note that tuning the interaction strength in situ at a fixed
ν is a challenge experimentally since a typical sample has a
fixed twist angle and substrate, and changing samples to
change θ or ϵ may lead to other unknown modifications.
Actually, ϵ=θ-tuned MIT has not yet been observed in
TTMDs [or twisted bilayer graphene (TBLG)], where a
system is experimentally found to be either insulating or
metallic depending on ν at low temperatures.
More interesting and accessible is the third type of MIT,

which is tuned by ν at fixed ϵ or θ. In the filling-tuned MIT,
one dopes (or gates) the system away from a fixed ν where
additional holes or electrons are created because of doping,
and the system could undergo an insulator to metal
transition solely because of doping (i.e., variation in ν)
itself without any explicit change in ϵ or θ. Such ν-tuned
MIT has been reported in the WSe2 TTMD structures,
where our theory should be applicable [11]. Our theory is
partially motivated by the recent experiments at Columbia
University [11], which is also recently observed in the
twisted WSe2=WSe2 [26] and a similar heterostructure
system MoTe2=WSe2 [27].
In Figs. 2(b)–2(d), we show calculated charge (energy)

gaps at Fermi energy as a function of ϵ for fixed θ ¼ 4° for
several values of ν, close to but slightly below ν ¼ 1. We
also show the same quantity for ν ¼ 1 for the sake of
comparison in Fig. 2(a). Our calculation is perturbative
starting from the ν ¼ 1 MI which we calculate nonpertur-
batively using SCMF theory. The experimentally relevant
value of ϵ depending on the sample and experimental
details is approximately between 5 and 30, most likely 10–
15. It is remarkable that although the ν ¼ 1 state is a strong
Mott AFI with a large gap for reasonable ϵ, the situation is
qualitatively different for ν just slightly below unity, where
the ground state is a ferromagnetic metal (FMM) or
antiferromagnetic metal (AFM) depending on ϵ in contrast
to the antiferromagnetic MI at ν ¼ 1. (The AFM phase is a
spin density wave adiabatically connected to the Néel AFI
at ν ¼ 1.) This is the filling-induced MIT, where the states
at ν ¼ 1, 2=3, 1=2, 1=3, etc. are CI, but nearby states doped
slightly away are metallic. The absolute energy difference
between the two competing phases (AFM versus FMM)
near ν ∼ 1 is in red corresponding to the right axis in Fig. 2.
We mention that the small gap at small ϵ (i.e., strong
interactions) in the effectively metallic ground state reflects
that the calculation is always done at a rational filling

factor, not at a true incommensurate filling which would be
the generic experimental situation just slightly away from
half-filling. This numerical gap in the metallic phase is
fictitious due to the finite discretization of the momentum
space, which should vanish as the mesh in the momentum
space becomes finer, i.e., it is metallic in the thermody-
namic limit. Note that this gap is orders of magnitude
smaller than the calculated gap at ν ¼ 1 and the gap goes
quickly to zero with increasing ϵ. This ensures that our
theory captures the correct physics of generic metallicity at
incommensurate filling close to ν ∼ 1, at small ϵ (large
interaction), which approaches the limit where Nagaoka-
like ferromagnetism dominates. For ν > 1, we find a
similar metallic state but without the Nagaoka ferromag-
netism. This is because the filling denotes the doping of
holes and it is equivalent to taking out the electrons if ν
goes above 1. In the electron number basis, the hopping is
negative, where the Nagaoka theorem requires a positive
hopping, thus the Nagaoka ferromagnetism is not guaran-
teed at ν > 1. Figure 3 shows the representative theoretical
results. We note that the ν > 1 manifests an AFM phase in
contrast to Nagaoka-like FMM for ν < 1.
The first transport experiment on WSe2 already showed

the existence of a strong insulating phase at ν ¼ 1 and

(a)

(b)

(c)

(d)

FIG. 2. The calculated charge gap (blue) as a function of ϵ for a
fixed θ ¼ 4° at (a) ν ¼ 1; (b) ν ¼ 19=20; (c) ν ¼ 14=15;
(d) ν ¼ 9=10. The red line is the absolute energy difference
between two competing phases. The first order transition happens
at the vertical dashed line with the name of phases labeled in blue.
AFI, AFM, FMI, FMM, and NM denote, respectively, the
antiferromagnetic insulator, antiferromagnetic metal, ferromag-
netic insulator, ferromagnetic metal, and normal paramagnetic
metal.
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metallic phases for doping slightly away from half-filling
[11]. So, our finding of a filling-tuned MIT in the TTMD
moiré system around ν ∼ 1 is consistent with experimental
results [26]. We have also checked that similar metallic
phases exist around the other TTMD CIs at fractional
occupancy, e.g., ν ¼ 1=3 [28].
Having established that a metallic state exists generically

away from half-filling (and other rational filling) in the
system, we now briefly discuss the nature of the correlated
insulating states, which should all be metallic states in the
noninteracting band picture because they represent frac-
tionally filled single-particle energy bands of the TTMD
system. We have already emphasized that the interaction
driven insulating phase at fractional rational fillings [22,23]
arising in moiré TTMD materials should be thought of
simply as a CI rather than as WCs or MH insulators, except
at ν ¼ 1 which is a strict MI. Quite generally, the WC and
MI are adiabatically connected with theWC being the weak
lattice potential and low-carrier-density (and consequently,
the vanishing filling factor) limit of the CI whereas the MI
is the strong lattice potential (and hence flatband) half-
filling limit of the CI (in specific situations) [4]. For the
half-filled ν ¼ 1 situation, the MI description is the
appropriate description because this insulator arises at
half-filling independent of how high the carrier density
might be. Additionally, as shown in Fig. 1, the ν ¼ 1 MI
exists independent of whether the interaction is long- or
short-ranged. But the insulator at other fillings (e.g., ν ¼
3=4; 2=3; 1=2; 1=3; 1=4 as discussed in Ref. [22]) cannot be
a simple MI since they disappear for the on-site interaction-
only model. We have explicitly checked that the insulating
phase at all ν except for ν ¼ 1 disappears if the distant
neighbor interaction terms are zero in Eq. (1). The fact that

the existence of CIs at ν other than 1 depends crucially on
having a long-range interaction may indicate that the WC
terminology is more appropriate for the CI for ν other than
unity. But this is untrue as can be seen from Fig. 4 where we
show the dimensionless continuum Coulomb coupling rs,
which is the average interparticle separation measured in
units of the effective Bohr radius as a function of ϵ and ν for
a fixed θ ¼ 4 in Fig. 4(a) and as a function of θ and ν for a
fixed ϵ ¼ 5 in Fig. 4(b). It is obvious that the applicable rs
for TTMD are too small in the physical parameter regime
(i.e., ϵ > 5 and ν > 1=4) for the WC to occur as it is well-
established that the critical rs necessary for a 2D WC is
rs > 30 [29]. These CIs at simple rational fillings other
than 1 are better considered as the lattice versions of a WC
[i.e., quantum charge density wave ordering (QCDW)]. We
predict that there should be a similar interaction-induced
MI in TBLG at ν ¼ 1=8, etc. (like ν ¼ 1=2, etc. in TTMD),
where electrons occupy distant TBLG moiré unit cells
forming a QCDW.
Our finding that a TTMD half-filled doped hole system

is an antiferromagnetic MI is significant since the
corresponding TBLG CI ground states are deemed ferro-
magnetic Chern insulators [32–37]. Establishing the
antiferromagnetic spin configuration of a TTMD half-
filled moiré system is an important future experimental
challenge.
We have theoretically discussed the filling-factor tuned

MIT in 2D moiré TTMD hole doped materials as well as
the nature of the correlated insulating states at rational
fillings (which are all nominal metals in the noninteracting
band pictures). We establish the existence of an antiferro-
magnetic Mott insulator at half-filling and the emergence of
nearby (i.e., just away from half-filling) magnetic metallic
phases. Our results are reminiscent of the Nagaoka ferro-
magnetism inherent in the strongly interacting Hubbard
model around half-filling although we consider a finite
(albeit low) doping level [38], and are consistent with

(a)

(b)

(c)

FIG. 3. The calculated charge gap (blue) as a function of ϵ for a
fixed θ ¼ 4° at (a) ν ¼ 21=20; (b) ν ¼ 16=15; (c) ν ¼ 11=10. The
red line is the absolute energy difference between closest
competing ground states. Refer to Fig. 2 for notations.

(a) (b)

FIG. 4. The dimensionless continuum Coulomb coupling rs
(a) at a fixed θ ¼ 4°; (b) at a fixed ϵ ¼ 5. The lattice constant of
the monolayer WSe2 is 3.28 Å [30], and effective mass m� ¼
0.45me [31] (me is the rest electron mass). The 2D quantum WC
condition rs > 30 is unsatisfied in the experimentally relevant
regime.
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recent experiments reporting metallicity in TTMD
slightly away from half-filling [26,27]. We predict such
metal-insulator transitions at other rational fillings such as
ν ¼ 1=3 [28].
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