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Charge transport processes at interfaces play a crucial role in many processes. Here, the first soft x-ray
second harmonic generation (SXR SHG) interfacial spectrum of a buried interface (boron–Parylene N) is
reported. SXR SHG shows distinct spectral features that are not observed in x-ray absorption spectra,
demonstrating its extraordinary interfacial sensitivity. Comparison to electronic structure calculations
indicates a boron-organic separation distance of 1.9 Å, with changes of less than 1 Å resulting in easily
detectable SXR SHG spectral shifts (ca. hundreds of milli-electron volts).
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Surfaces and interfaces play central roles in a variety of
critical biological systems, electronics, batteries, and cata-
lytic systems. Key chemical reactions and physical proc-
esses depend explicitly on the electronic structure of the
interface and the dynamics across it. Experimentally,
surfaces are often studied using a range of spectroscopic
and imaging techniques, from grazing incidence x-ray
scattering [1,2], to scanning probe [3,4] and total internal
reflection [5–7] spectroscopies. These methods, however,
are unsuited for the study of buried functional interfaces,
which often govern critical chemical and physical proc-
esses. Interfaces between two bulk materials, or surfaces
coated with macroscopically thick (hundreds of nanometers
or greater) capping layers, cannot be specifically probed
using these techniques. Absorption of photons by the bulk
materials prevents optical probes from even reaching such
interfaces, and the photoelectrons generated at the buried
interface by high penetration x-ray probes cannot escape.
Visible and IR second harmonic generation (SHG) and sum

frequency generation (SFG) [8,9] do not suffer from these
limitations of studying buried interfaces. These techniques
have been used for a variety of applications including
characterization of semiconductors, solar cell devices, and
biological structures [10–12]. While these techniques are
quite powerful, they typically provide information about
vibrational dynamics or valence transitions, and lack the
elemental specificity of x-ray techniques.
Until recently, x-ray nonlinear spectroscopy was pre-

cluded by the lack of available light sources with sufficient
coherence and flux, but the recent advent of x-ray free
electron lasers (FELs) that generate femtosecond pulses
with high peak powers and coherence has enabled such
experiments [13–15]. Soft x-ray SHG (SXR SHG) offers
powerful advantages compared to other surface-specific
techniques [16,17]: it has high penetration depth and
combines the element specificity of x-ray absorption
spectroscopy with the interfacial specificity of second
order nonlinear spectroscopies. Linear x-ray absorption
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spectroscopy (XAS) is a general tool for studying com-
pounds as it is element specific and sensitive to the
chemical and molecular environment of a target atom.
Element-specific measurements of core-to-valence transi-
tions can resolve individual contributions to the electronic
structure, which is not easily possible in optical spectros-
copies that detect valence-to-valence or vibrational tran-
sitions. This is especially important for disentangling the
contributions from hybridization at interfaces.
While x rays are highly penetrating, the use of different

detection methods provides a range of depth sensitivities:
transmission measurements are bulk sensitive, fluorescence
detection is sensitive to approximately 1 μm thick slabs
based on the penetration of the photons [18], and photo-
electron or total electron yield (TEY) detection provides
sensitivity of a few nanometers due to the limited escape
depth of photoelectrons [19–23]. Exploiting soft x-ray
SHG has the potential for even higher surface sensitivity,
since second harmonic (SH) photons are generated only
from regions with broken centrosymmetry. Note that for
hard x-ray radiation (>5 keV; <0.25 nm), the wavelength
is small enough that the electric field is sensitive to
inhomogeneities on an atomic scale, and the SH is
generated throughout the material, rendering it bulk sensi-
tive [24,25]. Instead, soft x-ray SH is generated only from
1–3 atomic layers at surfaces and interfaces of centrosym-
metric media, as shown recently in the first demonstration
of SXR SHG [16]. SXR SHG provides detailed electronic
structure information analogous to that probed by x-ray
absorption, with specificity for interfaces and no require-
ment for smooth surfaces. The elemental specificity of SXR
SHG also reduces extraneous signals from interfaces
containing other elements in a multilayer system. It is
therefore ideally suited for the study of buried interfaces,
but experimental proof is thus far lacking.
Here, we demonstrate the application of SXR SHG for

probing the buried interface of a boron film with a support
layer of Parylene N, a prototypical organic-inorganic
interface. In the experiment, we compare the SXR SHG
spectra of the boron-vacuum (B-V) and boron–Parylene N
(B-PN) interfaces (Fig. 1), providing the first demonstra-
tion of probing the element-resolved electronic structure at
a buried interface. To compare the interfacial sensitivity of
SXR SHG to that of TEY XAS, we measured TEY XAS of
similar samples (see Supplemental Materials for details
[26] including Refs. [27–41]) using drain current for
electron detection. The TEY XAS spectra of the B-V
and B-PN samples are largely indistinguishable, because
the probe depth of <10 nm is too large. By contrast, the
SXR SHG measurements show clear differences between
B-V and B-PN interfaces, allowing a detailed determination
of the bond characteristics. Accompanying detailed first
principles calculations of SXR SHG spectra for both
interfaces permits a detailed interpretation, showing that
the observed experimental shift between the two spectra is

due to boron interactions with Parylene N. This indicates a
strong surface spectral sensitivity to weak interactions, like
London dispersion forces.
At the EIS-TIMEX beamline at the free-electron laser

(FEL) FERMI [43], the SHG signal from the sample was
detected using the same apparatus as in our recently reported
study [16]. Nine different soft x-ray photon energies in the
range from 184 to 200 eV were used. These fundamental
input energies were just below, at, and just above the boron
K edge [44]. The input intensity (I0) of the FEL was
determined from the drain current of an ellipsoidal mirror
upstream of the sample. The samples comprised an unsup-
ported 200 nm boron film and a 200 nm boron film with a
100 nm Parylene N support layer, purchased from Lebow
Corporation. TEY x-ray absorption spectra of the two
materials were collected at Beamline 8-2 at SSRL with
the Parylene N layer only 10 nm thick to enhance signal and
the sample was mounted on silicon [45,46].
In our previous x-ray SHG study, it was found that the

SHG signals were very sensitive to the quality of the FEL
laser pulse [16]. Therefore, each FEL shot was filtered by
the energy spectrum of the pulse collected before the
sample [47]. The intensity of the generated SHG response
is given by the relation

ISHG ∝ jχð2Þj2I20;
where jχð2Þj is the second order nonlinear susceptibility of
the interfacial layer of boron atoms. The SXR SHG

FIG. 1. Schematic of SHG from interfaces. In the energy level
diagram (a), the density of states of boron (s-type red, p-type
green) is resonantly pumped with an FEL pulse (blue). Because
of selection rules, only the p-type states are probed. Two photons
at this energy combine in the material and a second harmonic
photon at twice the energy (purple) is emitted. The input energy is
shown at 189.5 eV, generating a photon of 379 eV. During the
experiment, the FEL energy was scanned from 184–196 eV. Two
different interfaces were studied here, the (b) boron-vacuum
interface and a (c) Parylene N–boron interface. The back boron-
vacuum interface also generates some SHG signal (shown in light
blue), but it will be less intense due to attenuation of the FEL
pulse from transmission through the sample.

PHYSICAL REVIEW LETTERS 127, 096801 (2021)

096801-2



intensity was plotted proportionally to I20 (assuming con-
stant pulse length and spot size) for each input energy and
fit with a linear regression. As can be seen in the equation,
the resulting slope is proportional to jχð2Þj2. Finally, this
slope was plotted as a function of photon energy to generate
the nonlinear spectrum of the material properties at the
surface or interface.
The measured SXR SHG spectra of the B-V and B-PN

interfaces are shown in Fig. 2. Resonance effects can be
seen in both spectra, as the SXR SHG intensity increases
when the fundamental energy is at or above the boron K
edge. There is an increase in cross section of B-PN
compared to B-V at 188 eV, 191 eV, and a decrease at
193.5 eV. Most notably, we observe a substantial increase
in the nonlinear response at energies slightly above the B
K-absorption edge. We attribute this to dipole-allowed
resonant transitions from 1s to unoccupied states with B
p character. The nonlinear response of this spectral region
therefore becomes highly sensitive to the electronic valence
structure of the interfacial bonds. The second photon
absorption process, into a virtual state well above the
conduction band to complete the SHG process, is non-
resonant and thus less sensitive to the interfacial bonds.
Well below and well above the edge, the SXR SHG spectra
of B-V and B-PN are within error of each other.
In contrast to SXR SHG results, there are no major

differences in the linear TEY spectra of the two materials
(Fig. 2). The TEY spectra are essentially identical for both
samples, indicating that this technique is insufficiently
sensitive to the interface to capture the differences seen

in the present SXR SHG spectra. It should be noted that it is
possible for some SXR SHG signal to be generated at the
back B-V interface, but this contribution will be smaller
than that of the front interface due to absorption of the
fundamental by the boron layer. More specifically, and as
we show, the SXR SHG signal is relevant for analysis at
energies above the linear absorption edge, and we operate
in direct resonance of the 1s to 2p transition (K edge). The
attenuation length for x rays above the edge is approx-
imately 50 nm. Therefore, the FEL beam is largely
absorbed in the boron film and the remaining intensity
on the rear side is expected to have a small contribution to
the SXR SHG signal. In contrast, the generated SXR SHG
signal (368 to 392 eV) from the front side is well above the
B absorption edge and is therefore only weakly absorbed
by the boron slab. Additionally, the back B-V interface is
the same for both samples, and so will not affect any
qualitative comparisons between the two interfaces. The
Parylene N transmits over 90% in the photon energy ranges
used here.
First principles electronic structure calculations via

perturbation theory within density functional theory
[16,48,49] were employed to simulate the SHG response
function. Here, the B-V SHG calculation was performed
using two layers of boron icosahedral unit cells. In order to
understand the influence of the organic molecule on the
electronic structure and resulting SXR SHG spectra at the
interface, we use boron-ethane (B-E) as a proxy for B-PN
for computational feasibility, since both B-E and B-PN
have a similar calculated line shape (Supplemental
Material, Fig. S7 [26]). Given resonant conditions, the
second harmonic signal in this energy range is expected to
arise primarily from the top boron layer [13], such that the
difference between one layer and multiple layers of ethane
in the simulation is negligible.
Our electronic structure calculations reveal a redshift of

the SXR SHG spectrum at the boron K edge for B-E, as
compared to B-V [Fig. 3(a)]. This is in general agreement
with the experimental spectra for B-PN vs B-V, where we
find a redshift of less than 2 eVof the main SXR SHG peak
at 191 eV. Although for the larger calculation we were
forced to use B-E for computational reasons, the
differences were small as compared to B-PN [26]. We
explored the effect of the interfacial bond length between
boron and the organic layer on the simulated spectra in
Fig. 3(b), where we find a monotonic blueshift in the
191 eV peak with increasing ethane separation, such that an
increase in the separation distance from 0.9 to 1.9 Å
resulted in a 2 eV shift, while a further increase to
2.9 Å lead to a further 1 eV shift. This shift is assigned
to London dispersion forces as no other strong interactions
are present. However, the exact spectral calculations are not
quantitative because broadening, inaccuracies of the atomic
positions, fluctuations in the molecular motions due to
thermal energy, and the calculated spectral ringing are not

FIG. 2. Second harmonic generation spectra of the boron-
vacuum and boron–Parylene N interfaces. The SHG spectrum
of the B-V (dark red triangle) and B-PN (dark blue circle)
interfaces, shown along with the linear x-ray absorption of the
boron film (light red) and boron Parylene N multilayer film (light
blue). The arrows indicate the appropriate y axis. The differences
in the x-ray absorption spectra are believed to be due to the
differences in the background and attempts to correct for it. jχð2Þj,
determined from the linear regression slope of the SHG signal vs
I20. jχð2Þj, is significantly higher at the boron K edge for B-PN than
for B-V. The error in FEL energy is smaller than the width of the
marker size.
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accurately represented. A separation distance of 1.9 Å
agrees with the minimum energy distance based upon a
relaxation within DFT, and is a good match to the
experimental SHG spectrum. Of note, an increase in the
separation distance from 1.9 to 2.0 Å resulted in a 200 meV
spectral shift. As 200 meV is easily resolvable at x-ray
FELs, the ability to determine distances with a resolution of
0.1 Å using this computation method has been shown
previously, particularly in the bulk [16,42]. This predicted
high sensitivity of SXR SHG to interfacial bond length
indicates a unique and general technique for elucidating
interfacial structure, but due to the low spectral density such
a high accuracy cannot be obtained here. Our calculations
reveal that ethane induces a shift in the Hartree potential
near the interface due to electronic screening, the magni-
tude of which is strongly dependent on the proximity of the
ethane layer to the boron surface. Density of states
calculations (Fig. S10 [26]) indicate that the boron core
energy levels lie at lower energy in B-E compared to B-V as
a result of this screening. Thus, the experimental spectral
differences between B-V and B-PN can be attributed to
electronic screening in the interfacial boron atoms, rather
than to specific interactions, e.g., orbital hybridization.

In conclusion, linear XAS spectra of the B-V and B-PN
samples exhibited no observable difference between the two
samples, whereas SXR SHG reveals distinct differences due
to its sensitivity to the interface. This is the first time that a
buried interface has been resolved with atom-specific
sensitivity. More generally, these experiments clearly dem-
onstrate the sensitivity of SXR SHG to subtle changes in the
interfacial electronic structure of the buried interface with
sensitivity to a single atomic layer. The results show that
SXR SHG is highly sensitive to interfacial bond lengths and
to subangstrom bond length changes, resulting in measur-
able spectral shifts in the hundreds of milli-electron volt
range. Under the assumption of comparability of an ethane-
boron interfacial bond with a Parylene N–boron interfacial
bond, it was possible to determine the bond length to be
approximately 1.9 Å. However, the fact that ethane had to be
used as a proxy for Parylene N in simulations of varying
distance highlights the importance of developing numerical
methods to enable computation of larger systems with high
fidelity. While SXR SHG spectroscopy clearly is a unique
and powerful new tool, profound understanding of inter-
facial electrodynamics will require a carefully orchestrated
duet of theory and experiment. Because of the ultrafast
nature of the probe and its sensitivity to single atomic layers,
the technique has great potential for future studies of
dynamics of buried interfaces in electrochemical cells and
catalysts. In the near future, SXR SHG spectroscopy can be
used to probe the interfacial electronic structure in a variety
of other systems of critical interest, including electronics,
batteries, and photocatalytic systems that are difficult to
study with other methods. Moreover, the newly revealed
high sensitivity to interfacial bond lengths and symmetries
will enable unique studies on interfacial strain and its
influence on electronic transport properties.
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