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Designing Hyperchaos and Intermittency in Semiconductor Superlattices

E. Momp6®, M. Carretero®, and L. L. Bonilla
Gregorio Milldn Institute for Fluid Dynamics, Nanoscience and Industrial Mathematics,
and Department of Mathematics, Universidad Carlos IIl de Madrid, 28911 Leganés, Spain

® (Received 26 April 2021; accepted 30 July 2021; published 25 August 2021)

Weakly coupled semiconductor superlattices under dc voltage bias are excitable systems with many
degrees of freedom that may exhibit spontaneous chaos at room temperature and act as fast physical
random number generator devices. Superlattices with identical periods exhibit current self-oscillations
due to the dynamics of charge dipole waves but chaotic oscillations exist on narrow voltage intervals. They
disappear easily due to variation in structural growth parameters. Based on numerical simulations, we
predict that inserting two identical sufficiently separated wider wells increases superlattice excitability by
allowing wave nucleation at the modified wells and more complex dynamics. This system exhibits
hyperchaos and varieties of intermittent chaos in extended dc voltage ranges. Unlike in ideal superlattices,
our chaotic attractors are robust and resilient against noises and against controlled random disorder due to

growth fluctuations.
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Introduction.—Recently, spontaneous chaotic oscilla-
tions in semiconductor superlattices (SSLs) at room tem-
perature [1] have attracted attention as all-electronic fast
generators of true random numbers [2], which are crucial to
secure fast safe data storage and transmission [3-5],
stochastic modeling [6], and Monte Carlo simulations
[7]. Quantum partition noise [8—10] due to electron
tunneling is the origin of randomness at the bottom of
entropy generation whereas most of the unpredictability of
the final number sequence rests on chaotic evolution:
random quantum seeds are expanded into fast changing
physical processes achieving generation rates up to hun-
dreds of gigabytes per second [2]. These superlattice
devices are smaller and more scalable than similarly fast
optoelectronic devices based on chaotic semiconductor
lasers [11-15]. SSLs are nonlinear systems with many
degrees of freedom, whose effective nonlinearity originates
from the well-to-well sequential resonant tunneling process
[16-19]. Very different spatiotemporal patterns observed in
dc-biased SSLs include static high-field domains, excita-
bility due to collective charge dynamics, and self-sustained
periodic and quasiperiodic current oscillations at low
temperatures [16—19]. Similar nonlinear excitable systems
include lithium batteries [20], modular proteins, DNA
hairpins [21], and peristaltic fluid motion in slime molds
[22]. Oscillatory and chaotic phenomena like those in SSLs
have been predicted and observed in quantum cascade
lasers [23-25]. External noise affects remarkably SSLs. It
induces current switching with nonexponential kinetics
[26]. At room temperature, large amplitude noise having
much smaller bandwidth than the oscillation frequency
creates and/or enhances chaotic oscillations over wider
voltage ranges [27]. Chaos synchronization between SSLs
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has been demonstrated [28]. Sufficiently strong external
noise induces self-sustained oscillations in an otherwise
stationary state (coherence resonance) and helps in
detecting superimposed weak periodic signals by stochastic
resonance [29,30].

Achieving better control of SSL random number gen-
erators (RNGs) requires understanding better spontaneous
chaos at room temperature. Current theoretical knowledge
is based on numerically simulating sequential tunneling
electron transport models for ideal SSLs having identical
periods. Spontaneous chaos is very sensitive to voltage
bias, is enhanced by noise [27,31,32], and depends strongly
on SSL configurations: short SSLs display clear period
doubling cascades to chaos, which occur on narrower
voltage intervals for longer SSLs [33,34]. See also
[35,36] for period doubling routes to chaos in ideal
SSLs at low temperatures. Random imperfections strongly
affect chaos and can alter significantly these scenarios [34].
Overall, numerical simulations predict spontaneous chaos
on narrower voltage intervals than those reported in experi-
ments, which means we need better modeling. In contrast to
this situation, theoretical predictions of driven chaos under
ac + dc voltage bias based on a simple sequential tunneling
model [37] are robust and were observed in experiments
many years ago [38].

Here, we adopt a different point of view: can we design
imperfections in SSLs to produce spontaneous chaos? The
answer is yes. We show by numerical simulating a
sequential tunneling model of nonideal SSLs that inserting
a wider well in a long SSL may trigger dipole waves there.
Our design idea is that appropriately modifying one or
more wells in the SSL triggers randomly dipole waves,
yielding hyperchaos, chaos with more than one positive
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Lyapunov exponent. It transpires that well modifications
and their location are crucial to produce rich chaotic
dynamics. Another important question is how resilient is
hyperchaos to fluctuations and additional imperfections.
We investigate this point to show that our design of strong
chaotic attractors is robust.

Microscopic sequential tunneling model.—Commonly
used models of SSL electron transport based on sequential
tunneling are reviewed in [17-19,32,39]. In these models,
each SSL period is described by average values of the
electric field and electron density. The effective masses and
permittivities of the different materials comprising the SSL
are replaced by average values. Here, we treat barriers and
wells as separated entities [40,41], which describes more
completely and realistically electron transport and sponta-
neous chaos. In weakly coupled SSLs, intrasubband
scattering times are much shorter than intersubband scat-
tering times which, in turn, are much shorter than the
interwell tunneling time across barriers. In processes
varying on the latter scale, only the lower subband CI1 is
occupied, electrons are in local Fermi-Dirac equilibrium
within it, and their two dimensional (2D) electron density
n; is related to their chemical potential u; by [17]

kgT [
n, — ks / Acy(€) In(1 + e=9/bT)de. (1)
0

h?

Here, i =1,...,N (N is the number of SSL periods); dy,
and dp are the widths of the ith well and barrier,
respectively. The electron temperature equals the lattice
temperature T'; kp is the Boltzmann constant. my, and mp,
are the electron effective mass at the GaAs wells and at the
barrier i, respectively. The Lorentzian functions A¢ (€) =
(r1/7)/[(€ = Ec1,)* + 73] account for the widening of the
C1 subband energies E¢, due to scattering with lifetime
7, = h/y, [41].

Poisson equations relate the voltage drops in the barriers,
V;, and the wells, V,, :

Vi Vil e

Wy, dB,.,l. +2 (i = Np,), (2a)
v, v,

€B, d_B, =€, dpy : + e(ni - NDi)’ (Zb)

i—1

where —e < 0, ey and €5, and N are the electron charge,
well and barrier static permittivities, and the 2D intentional
doping density at the well i, respectively [41,42]. The barrier
i = 0 separates the injector region from the SSL proper.
Equations (2) imply V,, = (dw,/2ew)[(ep_ Vi1/dp,_,) +
(€,V;/dpg,)], thereby eliminating the potential drops at the
wells from the system [41].

The voltage drops at the barriers satisfy Ampere’s law

ep, dV;
dp. dt

+Jini +&i(1) = J(1), (3)

where J(z) is the total current density, J;; | =
Jicoivi(Vie(, Vi, Vg, i phiy) s the tunneling current
through barrier i, and &;(z) the corresponding fluctuating
current [32]. See [43] for explicit formulas. Time
differentiating (2b) and using (3) produce a spatially
discrete continuity equation for the electron density n;.
Boundary conditions at emitter and collector are
phenomenological Ohm laws, Jo_; = 6,.(V(/dp,), and
Inont1 = 0c.(ny/Np,)(Vy/dp,), where 6, and o, are
the contact conductivities, dBj are effective lengths for the
contact regions, and Np  is the collector effective 2D
doping density, cf. [44]. The voltage bias condition V =

NoVi+ 2N, V, = Vg +n(1) closes the set of equa-
tions; 7(z) is the external circuit noise.

Modified SSL and deterministic numerical simulations.—
References [1,2] consider 50-period GaAs/Alj45Gag 55As
SSLs with dy =7 nm, dp =4 nm. Wells have three
subbands with energies 41.6, 165.8, and 354.3 meV and
level broadenings due to scattering, 2.5, 8, and 24 meV,
respectively [45]. Effective electron mass and permittiv-
ities at wells and barriers are my = 0.063m,, mg =
(0.063 + 0.083x)m, = 0.1m,, eg = 10.9¢(, ey = (12.9 —
2.84x)ey = 11.7¢y (x = 0.45; ¢ is the vacuum dielectric
constant), respectively. The central part of all quantum
wells is doped, producing an equivalent 2D doping density
Np=6x10"0cm™2. A =52 s=30um, [ =dz+dy,
are the SSL cross section, the square mesa side length, and
the SSL period, respectively. o. =0, = 0.49 A/(Vm),
Np, = Np.

First, ignore noises and fluctuations in doping density
and in barrier and well widths. The /-V characteristics of
SSLs with identical periods correspond to stable stationary
states except on voltage intervals where self-sustained
oscillations of the current exist (provided the number of
SSL periods exceeds 14, the minimum number needed to
attain self-oscillations [19]). Time periodic self-oscillations
are caused by the formation of dipole waves at the emitter,
motion toward, and annihilation at the collector. For the
numerical parameter values listed above and increasing
voltage, the self-oscillation branch starts at a supercritical
Hopf bifurcation and ends at a saddle-node infinite period
bifurcation [29,30]; see Fig. 1 in [43]. Changing param-
eters, we may find narrow regions of chaotic attractors [31],
but we prefer to modify the SSL design searching robust
chaos.

What can we expect by changing the width of a well in
an otherwise ideal SSL? Consider the ideal SSL tunneling
current, J;_; .1 (V) = Jiipyi(V, V.V, up, pp ), for constant
barrier voltage drops V; =V, fixed electron densities
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FIG. 1. Tunneling current-voltage characteristics for ideal SSLs

having identical periods with n; = Np, V; = V. We compare the
reference configuration dg = 4 nm, dy = 7 nm to the contact
Ohm’s law and to other configurations with more or less
monolayers at all the wells. Wider (narrower) wells produce
curves with lower (higher) maximum current. The maximum and
critical currents of the reference configuration are marked with a
cross and a diamond, respectively. Other configurations differ in
three, six, or nine monolayers from reference. Energy levels were
calculated using the Kronig-Penney model.

n; = Np, and up given by (1). Figure 1 shows how the
intersection of J,_; (V) and Jy_;(V) (marked with a
diamond for the reference configuration) changes with well
width. This intersection roughly marks the critical voltage
and current at which the contact issues a dipole wave,
which causes current self-oscillations, excitability, and
other phenomena [17-19,29,39]. Clearly the critical current
is lower for SSL with wider wells, which facilitates
triggering dipole waves there. The opposite holds for
narrower wells. What happens when we make a single
well of a long SSL wider? Numerical simulations show that
each added monolayer shifts significantly the region of
self-oscillations until there are six extra monolayers in total.
From that point on, adding more monolayers to the
modified well does not change the self-oscillation region
of the I — V curve. Thus, we insert a single well having
dyw = 10 nm (ten added monolayers to a 7-nm well)
and energy levels & =24.0 meV, &, =96.1 meV,
Ec, = 214.7 meV. Numerical simulations show /-V curves
with one or more regions of self-oscillations depending on
the wider well position. As for unmodified SSLs, current
self-oscillations arise from the dynamics of charge dipole
waves, which may be nucleated at the wider well. Dipole
waves change slightly when traveling through the wider
well, which produces sudden and short-lived current
spikes. We do not find chaos.

When we introduce two well separated wider wells, the
resulting dynamics is dominated by one of them (and it is
not chaotic) unless both modified wells are identical, as in
Fig. 2. The wider wells are not adjacent to the contact
regions, we label them i; and i, (i} < i), with widths
dw, = 10 nm, and regions I, II, and III are the intervals
i <iy, ] <1<l and i > iy, respectively. If regions II

(a)
Vdc SSL. )

3.5nm GaAs
3nm n-GaAs
3.5nm GaAs

FIG. 2. (a) Sketch of circuit containing the modified SSL;
(b) barrier-well period of the unmodified structure [2]; (c) barrier
and modified well.

and IIT have more than 14 wells (minimal length to sustain
oscillations [19]), dipole waves can be nucleated at i; and at
i, they travel through regions II and III respectively, and
their motion is strongly correlated. Typically, each region II
and III supports one dipole wave but there are specific
instances of two waves moving on the same region. For
iy = 5, observation of chaotic attractors requires the second
wider well to satisfy 28 < i, < 35. Note that modified
SSLs exhibit self-oscillations with faster frequencies than
in ideal SSLs because the dipole waves causing them travel
on shorter regions of the device.

Through Poincaré maps, Lyapunov exponents, and
density plots of the Fourier spectrum build from potential
drops at separated periods, V, and V4, Fig. 3 shows a
variety of dynamical behaviors for the voltage range where
self-oscillations occur. As the voltage bias V. increases,
the stationary state loses its stability and a time periodic
attractor (cycle) appears at V4. = 0.9 V. The voltage
profiles consist of charge dipole waves being repeatedly
nucleated at both modified wells and advancing toward the
collector without reaching it. At V4. = 0.96 V a second
cycle appears and interacts with the first one. The resultis a
hyperchaotic attractor with two positive Lyapunov expo-
nents. Trajectories fill the space between the two cycles,
cf. phase portrait (V s, V35) in Fig. 4(f). In the voltage
interval 0.96 < V4. < 1.1 for hyperchaos, dipole waves
nucleated at the second modified well either cannot reach
the collector or, if they do, dipoles cannot stay in the wells
near the collector. For larger voltages, the second Lyapunov
exponent becomes smaller albeit positive, and intermittent
chaos appears instead, cf. Fig. 3(c). This corresponds to the
appearance of another cycle that interacts with the others
and eventually disappears at a saddle point; see Figs. 4(f)
and 4(g) for V4. =1.03V and 1.10 V, respectively.
Intermittency chaos appears for the interval 1.10 < V4. <
1.37: irregular bursts corresponding to a cycle are separated
by intervals for which the trajectories are close to the saddle
point, cf. Fig. 4(c). This behavior is associated to dipole
waves that reach the collector, stop there, and remain in the
last SSL periods (quiescent stage), whereas periodic bursts
are associated to dipole wave recycling in regions II and III
[43]. At V4. = 1.2 V, the saddle point expands to a saddle
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FIG. 3. (a) Poincaré map from V4 (¢), (b) Poincaré map from

V42(t), (c) three largest Lyapunov exponents, and (d) Fourier
spectrum density plot versus V. for the modified SSL with i; =
5 and i, = 30. To avoid redundant symmetric points, the Poincaré
maps depict V., (1) and V(1) at times * where the time trace at a
widely separated well, V|, (), takes on its mean value in time and
V15(r*) > 0. Each panel shows features hidden in the other ones.
The Poincaré map reveals jumps between periodic attractors at
V4 =13V and V4 = 1.43 V. The Fourier spectrum reveals
underlying quasiperiodic behavior with different incommensu-
rate frequencies, whereas the Lyapunov exponents show that the
system is hyperchaotic for V4. < 1.08 V (1;, 4, > 0 and of
comparable scales). For V4. > 1.08 V, the system has intermit-
tent chaos at different timescales (4; > 1, = 0).

cycle and the intermittent behavior continues, cf. Fig. 4(d).
The quiescent stage is now associated to low frequency
oscillations. At V. = 1.37 V, the intermittency becomes a
period 3 cycle: three loop trajectories in the phase plane,
cf. Fig. 4(j). At larger dc voltages the periodic behavior
continues and it becomes simpler (two loops at 1.43 V, a
single loop for larger voltages). The transition from
periodic attractors with three loops to two loop ones at
1.43 V is rather abrupt; see Figs. 3(a) and 3(b). There is a
hysteresis cycle about this voltage value that becomes
manifest by sweeping up or down the dc voltage. The self-
oscillation last branch disappears at a supercritical Hopf
bifurcation.

Effects of width randomness and noise.—When growing
SSLs, it is difficult to control perfectly the layer width of
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FIG. 4. (a)-(e) Current traces I(), and (f)-(j) phase plane
portraits (Vs, Vss) illustrating hyperchaos and intermittencies
for Vg = (a),(f) 1.03 V, (b),(g) 1.10 V, (c),(h) 1.20 V, (d),
(1) 1.275V, (e),(j) 1.40 V. In the phase portraits blue to red colors

indicate lower to higher values of y/V?2s + V3, thereby visual-

izing the rate of change in voltage drops. See also density plots of
the electric field in [43].

the two semiconductors. How do well width fluctuations
affect SSL current self-oscillations? Let dy, + 6; be the
widths, with dy, = dy,, = 10 nm and dy, =7 nm for
i #5, 30. We extract §; out of a zero mean normal
distribution with standard deviation . Then deviations
larger than +2¢ are rare. We ignore internal, external noises
and fluctuations in doping density, barrier width, and
composition. Depending on the resulting random configu-
ration, intervals of hyperchaos or intermittent chaos may be
destroyed. The success rate of disordered SSLs still
exhibiting chaotic behavior depends on o, cf. Fig. 5 in
[43]. For 6 < 0.015 nm, the chaotic attractors of the SSL
without disorder persist and ¢ = 0.024 nm is sufficient to
yield a 70% success rate. During epitaxial growth [46], Al
atoms within each interface alloy monolayer may be
segregated into local clusters or not be randomly positioned
in the Ga or the As sublattice [47]. This produces nonzero ¢
even if there are no errors in the number of monolayers per
barrier and well (monolayer width: 0.3 nm). Careful design
achieves ¢ < 0.018 nm in simpler devices [47,48], which
would yield reliably chaotic SSLs.

In repeated simulations of SSL equations with internal
(shot and thermal) and external (2 mV rms for a 50 Ohm
resistor) noise, we observe that noises diminish the largest
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Lyapunov exponent of chaotic attractors and augment
slightly the third Lyapunov exponent (which does not
become positive). Noise forces the system to visit more
often contraction regions of the phase space such as the
quiescent regions between bursts in intermittent chaos. This
lowers the largest Lyapunov exponent [49]. Thus, contrary
to the effect reported and observed in ideal SSL with
identical periods [27,31], noises do not enhance chaos in
our modified SSL.

In conclusion, inserting two wider wells (separated by at
least 14 wells and not adjacent to the contacts) in a long
SSL produces robust resilient chaos on wide bias ranges:
hyperchaos and intermittent chaos persist in the presence of
disorder and noise. Our design is based on the complex
dipole wave dynamics triggered at the two identical wider
wells. It requires careful control of sample growth. Unlike
our proposed structures, ideal SSLs with identical periods
loose more easily their complex dynamics to well width
fluctuations. Our work ushers in robust design of chaotic
attractors in SSLs, which act as all-electronic building
blocks of fast true RNGs. We could explore enhancing
complex dynamics and hyperchaotic attractors by inserting
more separated identical wider wells within the limits set by
the minimum separation distance for self-oscillations and
the longest working SSL that is feasible to build. Another
important application is building distribution devices for
encryption keys that exploit chaos synchronization [50].
Since synchronization of chaotic SSLs has been exper-
imentally demonstrated [28,51], our robust design of
chaotic SSL devices may be used to distribute secret keys
safely.
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