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In a 2D turbulent fluid containing pointlike vortices, Lars Onsager predicted that adding energy to the
fluid can lead to the formation of persistent clusters of like-signed vortices, i.e., Onsager vortex (OV)
clusters. In the evolution of 2D superfluid turbulence in a uniform disk-shaped Bose-Einstein condensate
(BEC), it was discovered that a pair of OV clusters with opposite signs can form without any energy input.
This striking spontaneous order was explained as being due to a vortex evaporative-heating mechanism,
i.e., annihilations of vortex-antivortex pairs which remove the lowest-energy vortices and thereby boost the
mean energy per vortex. However, in our search for exotic OV states in a boundaryless 2D spherical BEC,
we found that OV clusters never form despite the annihilations of vortex pairs. Our analysis reveals that
contrary to the general belief, vortex-pair annihilation emits intense sound waves, which damp the motion
of all vortices and hence suppress the formation of OV clusters. We also present unequivocal evidence
showing that the true mechanism underlying the observed spontaneous OV state is the vortices exiting the
BEC boundaries. Uncovering this mechanism paves the way for a comprehensive understanding of
emergent vortex orders in 2D manifolds of superfluids driven far from equilibrium.
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In 2D turbulent flows such as in soap films [1] and
Jupiter’s atmosphere [2], large-scale persistent vortex
structures are often observed. The appearance of these
large-scale vortices can be understood in terms of a
simplified point-vortex model proposed by Onsager [3]:
when energy is continuously injected into a finite-sized 2D
fluid containing many pointlike vortices, the like-signed
vortices must eventually aggregate to form large clusters
[i.e., Onsager vortex (OV) clusters] in order to sustain the
high kinetic energy of the fluid. This ordered OV state is
associated with a negative temperature since it has more
energy but less entropy as compared to a state with
randomly distributed vortices [3]. While Onsager’s model
has provided valuable insights into 2D turbulence in
general [4,5], it is particularly relevant to 2D superfluids,
such as planar Bose-Einstein condensates (BECs) [6,7] and
superfluid helium films [8,9], where the vortices are indeed
pointlike topological defects with a quantized circula-
tion [10].
Surprisingly, recent numerical simulations of 2D turbu-

lence in uniform disk-shaped BECs uncovered that a pair of
OV clusters with opposite signs can form even in the
absence of any energy input [11,12]. This intriguing
spontaneous emergence of order from chaos has prompted
extensive subsequent research [13–19]. A widely accepted
explanation is that this emergent order is caused by a vortex
evaporative-heating mechanism [11,12], i.e., annihilations

of vortex-antivortex pairs at close separation. Such pairs of
vortices induce negligible flows in the BEC. Therefore,
their annihilations merely decrease the number of vortices
but retain the total energy of the vortex system, which
thereby increases the mean energy per vortex. For a disk-
shaped BEC with a radius R carrying zero angular
momentum but sufficient energy, it has been shown that
as the vortices keep annihilating, the vortex system can
evolve into the negative temperature state and eventually
approach a limiting configuration consisting of two con-
centrated vortex clusters separated symmetrically around
the disk center by about 0.922R [13], as shown in Fig. 1(a).
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FIG. 1. Schematics showing the limiting configuration of OV
clusters in 2D BECs with zero angular momentum in (a) planar
disk geometry and (b) spherical shell geometry. The points of
different colors represent vortices of different signs.
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This limiting configuration gives the highest kinetic energy
per vortex.
Recently, there has been increasing interest in BECs

confined in a spherical shell geometry [20–24]. Creating
such a curved BEC manifold using a spherical bubble trap
was proposed two decades ago [25], but later research
showed that this could be achieved only in microgravity
since otherwise the atoms would fall to the bottom of the
trap [26,27]. Nevertheless, this technical barrier was
conquered recently due to the installation of the NASA
cold atom laboratory at the International Space Station
[28,29]. Unlike the disk BEC case, the formation of any
dipole OV-cluster configuration in 2D turbulence on a
spherical surface is always associated with a finite angular
momentum and therefore is prohibited if the BEC has zero
angular momentum to begin with. In this situation, a novel
quadrupole limiting configuration with two pairs of like-
signed OV clusters across two perpendicular diameters is
expected [see Fig. 1(b)], since the corresponding flow field
carries the highest kinetic energy with zero angular
momentum.
In this Letter, we discuss our search for the exotic OV

states in 2D spherical BECs. To our surprise, we find that
OV clusters never form despite the annihilations of vortex
pairs. We then present unequivocal analysis results to show
that the spontaneous OV state in isolated BECs is not due to
vortex-pair annihilations but instead is caused by vortices
exiting the BEC boundaries. Uncovering this true mecha-
nism not only explains the absence of OV clusters in
boundaryless 2D spherical BECs but also advances our
knowledge of spontaneous vortex orders in 2D superfluid
manifolds in general.
Numerical method.—We model the dynamics of the

BECs at low temperatures using the three-dimensional
Gross-Pitaevskii equation (GPE) [30]:

iℏ
∂ψ
∂t ¼

�
−
ℏ2

2m
∇2 þUðr; tÞ þ gjψ j2

�
ψ ; ð1Þ

where ψ ¼ jψ jeiϕ is the condensate wave function,m is the
particle mass, g is the coupling constant, and U is the
external potential that confines the BEC. To generate quasi-
2D BECs in both the disk and the spherical shell geometries
for comparative studies, we adopt the confining potential
used in Ref. [11] to create a disk BEC:

UðrÞ ¼ U0ftan h½ðr − RÞ=aosc� þ 1g þ 1

2
mω2z2; ð2Þ

where U0 and ω are parameters pertinent to the trap
strength in the radial plane and along the z axis. aosc ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=mω

p
is the characteristic trapping length in the z

direction that controls the disk thickness, and R sets the
disk radius. To create a spherical BEC shell, the following
radial potential is used [20–22]:

UðrÞ ¼ 1

2
mω2ðr − RÞ2: ð3Þ

For convenience, we normalize the time and length scales
as t̃ ¼ ωt and r̃ ¼ r=aosc so the original GPE can be written
in a dimensionless form:

i
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�
−
1

2
∇̃2 þ U

ℏω
þ g̃jΨ̃j2
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where ψ̃ ¼ ψ=ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N=a3osc

p
Þ with N ¼ R

dVjψ j2 being the
total particle number. We select the trap parameters such
that the normalized coupling constant g̃ ¼ gN=ℏωa3osc ¼ffiffiffiffiffiffiffiffi
125

p
× 104 and U0=ℏω ¼ 64, matching with those in

Ref. [11] and the experimental work [31]. The radius for the
disk BEC is set to R̃ ¼ R=aosc ¼ 30 and for the spherical
BEC shell is R̃ ¼ 15, so the two BECs have the same
surface areas.
We then numerically imprint [22,32,33] the velocity field

of 80 vortices and 80 antivortices at random locations in the
two BECs while keeping their angular momentum nearly
zero [11]. Equation (4) is evolved in imaginary time for a
short period to heal the vortex-core structure [34]. The
dynamical evolution of the condensate wave function is
then obtained by numerically integrating Eq. (4) with
spatial resolutions Δx̃ ¼ Δỹ ¼ Δz̃ ¼ 0.1 and a time step
of 10−3 using the fourth-order Runge-Kutta method [35]
(see Supplemental Material [36]).
Simulation results.—The evolution of the quasi-2D BEC

from a typical initiate state in both the disk geometry and
the spherical shell geometry can be seen in the movies in
the Supplemental Material [36]. In Fig. 2, we show snap-
shots of the condensate density on the z̃ ¼ 0 plane for the
disk BEC and on the r̃ ¼ R̃ surface for the spherical BEC
shell. In the disk BEC, the like-signed vortices tend to form
transient clusters that grow with time, which eventually
lead to two counterrotating persistent OV clusters. The
annihilation of the vortices essentially ceases upon the
formation of the OV clusters. These observations agree
nicely with those of Ref. [11].
In the spherical BEC shell, the vortex-pair annihilations

result in a somewhat more rapid decay of the total vortex
number Nðt̃Þ, as shown in Figs. 2(c) and 2(d). Note that in
2D BECs, two vortices annihilate essentially via a multi-
vortex interaction process [37–40]. When a general n-
vortex process controls the vortex decay, a scaling of
Nðt̃Þ ∝ t̃−ð1=n−1Þ is expected [40]. At large t̃ but before
the OV clusters form in the disk BEC, we find thatNðt̃Þ can
be fitted well using this scaling with n ¼ 2.4 for the disk
BEC and n ¼ 3 for the spherical shell BEC. The n ¼ 3
scaling is likely generic for pair annihilations in boundary-
less quasi-2D BECs (see Supplemental Material [36]). On
the other hand, the n ¼ 2.4 scaling for the disk BEC
indicates the presence of both two-vortex and three-vortex
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processes. Indeed, there are two distinct processes through
which the vortices can decay in the disk BEC, i.e., pair
annihilations and exiting from the disk boundary. The
exiting process may be regarded as the annihilation of a
vortex with its image charge in the presence of a second
vortex, i.e., essentially a two-vortex process. According to
Fig. 2(c), about 1=3 of the decayed vortices in the disk BEC
are caused by vortex exiting.
Despite the more rapid annihilation of the vortex pairs in

the spherical BEC shell, there appear to be no vortex
clusters at any time [see Fig. 2(b)]. More concrete evidence
showing whether or not OV clusters ever form in a BEC can
be obtained from the evolution of the vortex energy [41].
Note that the total kinetic energy of a BEC consists of three
parts: an incompressible part due to the flow field induced
by the vortices, a compressible part due to sound waves,
and a quantum pressure term [42]. Many past studies
evaluated the incompressible kinetic energy associated with
the vortex system in planar BECs by first extracting the
core locations of all vortices and then applying the
following point-vortex Hamiltonian [11–13,15,16]:

H ¼ −
ρ0κ

2

4π

�X
i<j

sisj lnðjr0i − r0jj2Þ −
X
i

s2i lnð1 − r0i
2Þ

−
X
i<j

sisj ln ð1 − 2r0i · r
0
j þ jr0ij2jr0jj2Þ

�
; ð5Þ

where ρ0 is the mean density, κ ¼ h=m is the quantized
circulation, and r0i ¼ ri=R denotes the normalized position
vector of the ith vortex with a winding number si ¼ �1.

Here we adopt the same procedures. For vortices in the
spherical shell, the following Hamiltonian is used [43,44]:

H ¼ −
ρ0κ

2

4π

X
i<j

sisj lnð1 − r0i · r
0
jÞ: ð6Þ

The variations of the normalized incompressible kinetic
energy EV ¼ ð4π=ρ0κ2ÞH in both BEC geometries are
calculated and shown in Fig. 3. For reference purposes, we
have also included in Fig. 3 the threshold energy EcðNÞ
above which a 2D neutral N-vortex system enters the
negative temperature regime. This EcðNÞ is derived via a
Markov chain Monte-Carlo method [45] using the above
Hamiltonians (see Supplemental Material [36]). Since OV
clusters appear only at energies significantly higher than
EcðNÞ [13], we also introduce a reference energy E�ðNÞ at
which the mean dipole (or quadrupole) moment of the
vortices equals 30% of the value for the limiting configu-
ration depicted in Fig. 1. Above E�ðNÞ, clear vortex
clusters are readily observable. Both EcðNÞ and E�ðNÞ
vary with t̃ as the total vortex number Nðt̃Þ decays. From
Fig. 3, one can see that for the disk BEC the vortex energy
EV quickly rises to above E�ðNÞ, which explains why OV
clusters were observed. On the contrary, EV for the
spherical BEC shell barely gets above EcðNÞ and is always
below E�ðNÞ, which thereby confirms that OV clusters
never formed in the spherical BEC shell.
The contrasting fate of the vortices in the disk BEC and

the spherical BEC shell calls for an explanation. As we
discussed earlier, the vortices in the spherical BEC shell can
decay only via pair annihilations, whereas in the disk BEC
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FIG. 2. (a),(b) The evolution of the condensate density ρ̃ ¼ jψ̃ j2 in the Gross-Pitaevskii model for the quasi-2D BEC in the disk
geometry and the spherical shell geometry, respectively. The vortices and antivortices are marked with dots of different colors for better
visibility. The shaded regions in the disk BEC signify the places where coherent OV clusters are seen. (c),(d) The evolution of the total
vortex number Nðt̃Þ (black circles). The red circles in the disk BEC case give the partition of the decayed vortices due to the pair-
annihilation process ΔNpair and due to vortices exiting the boundaries ΔNb.
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they can decay via both pair annihilations and exiting from
the boundary. To better understand the consequence of this
difference, we simulated the annihilation of an isolated
vortex pair and the exiting of a single vortex in the disk
BEC using GPE. For the annihilation test, we first prepare a
vortex-antivortex pair at close separation and then evolve
Eq. (4) with a small added damping so the two vortices
approach each other while the pair propagates [40]. When
the vortex separation is about the core size, we set t̃ ¼ 0 and
remove the added damping, so the subsequent annihilation
process is not affected by artificial dissipation. Similar
procedures are adopted for the single vortex near the disk
boundary. The results are shown in Fig. 4. One can see that

the pair annihilation in bulk BEC generates intense sound
waves due to the conservation of linear momentum. On the
contrary, in the vortex-exiting process, the vortex merges
into the zero-density region, which hardly generates any
sound waves.
The sound waves in the BECs can damp out the vortex

motion and dissipate the incompressible kinetic energy
possessed by the vortex system [37]. This process is similar
in nature to the mutual friction damping on quantized
vortices in superfluid helium caused by the normal-fluid
component [46–48]. Therefore, one may draw the follow-
ing conclusions: i) the pair-annihilation process alone does
not lead to the formation of OV clusters due to the intense
sound emission and ii) the exiting of the vortices from the
BEC boundaries, which increases the mean energy of the
vortices with minimal sound emission, is the true mecha-
nism responsible for spontaneous vortex orders. To verify
these conclusions, we present two complementary tests that
can produce unequivocal supporting evidence.
Complementary tests.—In the first test, we examine the

ideal dynamics of the vortices on the spherical surface
(R̃ ¼ 15) without sound waves. To do this, we consider
point vortices with the same initial distribution as in our
GPE simulation and evolve them using the equation of
motion derived from the Hamiltonian in Eq. (6) [43,44]:

dr0i
dt̃

¼ 1

2R̃2

X
j≠i

r0j × r0i
1 − r0j · r

0
i
: ð7Þ

To mimic the vortex-pair annihilation process, we remove
vortex-antivortex pairs whenever the arc-length separation
between two vortices is less than 0.03R̃ [11]. At large t̃, we
find that four vortex clusters form spontaneously as shown
in Fig. 5, which eventually evolve toward the limiting
configuration given in Fig. 1(b). This dynamic is not
surprising, because removing a vortex pair at close sepa-
ration essentially amounts to subtracting a large negative
quantity from the Hamiltonian. Therefore, the energy of the
point-vortex system steadily increases with time, which
inevitably leads to the formation of OV clusters. The exact
time it takes before OV clusters emerge depends on the
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FIG. 3. Evolution of the incompressible kinetic energy EV
associated with the vortices in (a) the disk BEC and (b) the
spherical BEC shell. EcðNÞ is the threshold energy for transition
to the negative temperature state, and E�ðNÞ is a reference energy
above which vortex clusters are readily observable.
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FIG. 5. Point-vortex model simulation of the vortex dynamics
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threshold separation for vortex-pair removal. This test
shows that the evaporative-heating mechanism would work
only in the absence of sound waves. Our result also calls for
caution when using the point-vortex model to understand
the vortex dynamics in real BECs.
In the second test, we conduct a GPE simulation with 80

vortices and 80 antivortices at random locations in a square-
shaped planar quasi-2D BEC. We adopt the same trapping
parameters U0 and ω as for the disk BEC and set the side
length of the square to R̃ ¼ 50 so its area is also similar. We
can now apply either the box-wall boundaries (i.e., with the
hyperbolic tangent potential) or the periodic boundaries
[40] so that the vortex dynamics in the same BEC geometry
with and without the vortex-exiting mechanism can be
compared directly. Figure 6 shows representative snapshots
of the BEC density from the same initial state with the two
boundary conditions. Large-scale OV clusters are seen only
in the case with the box-wall boundaries. We have also
tested the vortex evolution in a curved BEC with a
boundary for vortex exiting (i.e., a quasi-2D spherical
BEC cap) and again observed OV clusters (see
Supplemental Material [36]). These results unambiguously
demonstrate the crucial role of the vortex-exiting bounda-
ries in the spontaneous formation of vortex orders.
In summary, we have examined the evolution of vortices

in both planar and spherical 2D BECs. A comprehensive
understanding of the mechanism underlying the sponta-
neous vortex orders is achieved, which represents major
progress in the study of the far-from-equilibrium dynamics
of 2D superfluids. Our findings may also motivate future
experiments in 2D spherical BECs at the International
Space Station.
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