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Turbulent puffs are ubiquitous in everyday life phenomena. Understanding their dynamics is important
in a variety of situations ranging from industrial processes to pure and applied science. In all these fields, a
deep knowledge of the statistical structure of temperature and velocity space-time fluctuations is of
paramount importance to construct models of chemical reaction (in chemistry) and of condensation of
virus-containing droplets (in virology and/or biophysics) and optimal mixing strategies in industrial
applications. As a matter of fact, results of turbulence in a puff are confined to bulk properties (i.e., average
puff velocity and typical decay or growth time) and date back to the second half of the 20th century. There
is, thus, a huge gap to fill to pass from bulk properties to two-point statistical observables. Here, we fill this
gap by exploiting theory and numerics in concert to predict and validate the space-time scaling behaviors of
both velocity and temperature structure functions including intermittency corrections. Excellent agreement
between theory and simulations is found. Our results are expected to have a profound impact on developing
evaporation models for virus-containing droplets carried by a turbulent puff, with benefits to the
comprehension of the airborne route of virus contagion.
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Turbulent puffs occur whenever a fluid is impulsively
ejected from a localized source in an undisturbed environ-
ment. Once the source is switched off, the cloud freely
evolves into the ambient. In the freely evolving regime, the
fluid cloud is named a puff, to distinguish it from the initial
jet phase [1]. Puff turbulence is a relevant example of
nonideal turbulence; i.e., all space-time symmetries of ideal
turbulence do not hold. It is, thus, a challenging playground
for theoreticians to develop a theory through which to
characterize the statistical structure of turbulence. It is,
however, a challenging problem also on the side of
numerical analysis: The high Reynolds number character-
izing the majority of interesting expulsion phenomena
makes the problem technically difficult. In addition to
the interest from a fundamental perspective, a deep,
quantitative, understanding of puff turbulence nowadays
emerges as a key issue of practical importance. Indeed,
there are now robust evidences that the COVID-19
pandemic is largely caused by airborne transmission of

virus-containing saliva droplets transported by the puffs of
human exhalations [2–4]. Puffs are also common in
industrial processes (a puff is the product of a variety of
atomizers used, e.g., for disinfection and sanitizing pur-
poses), in environmental sciences (a puff is a cloud of
pollutants emitted, e.g., from chimneys), and in chemistry
(a puff is a laboratory for dangerous chemical reactions,
e.g., in the smoke of cigarettes) and many others.
Despite their ubiquity, current knowledge of puff turbu-

lence remains confined to the pioneering work by
Kovasznay et al. (1975) [5], having as a main focus only
bulk quantities involved in the puff dynamics, such as the
puff bulk translational velocity and the average puff radius.
Understanding the small-scale structure of fluctuations
(clearly detectable in Fig. 1) still remains elusive. Here,
we fill the existing gap in the present state of knowledge by
proposing a statistical theory explaining the small-scale
structure of turbulence fluctuations in a puff. Our theory is
based on an adiabatic generalization of the Kolmogorov-
Obukhov picture of steady Navier-Stokes turbulence [6,7],
where intermittency corrections are also included. The
theory gives meaning to the concept of inertial range,
energy flux, and scaling behaviors of proper statistical
observables in both space and time. The resulting predic-
tions are compared against state-of-the-art numerical
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simulations of the fully resolved puff evolution, showing
excellent agreement. Predictions based on adiabatic gen-
eralizations of steady Navier-Stokes turbulence have been
successful also in describing inertial-range scaling laws in
decaying homogeneous anisotropic turbulence [8].
The dynamics of a fluid impulsively ejected in an

undisturbed environment is described in terms of the
well-known Oberbeck-Boussinesq equations for the velo-
city uðx; tÞ and the fluid temperature excursion Tðx; tÞ,
measured with respect to the (constant) ambient temper-
ature θa [9]:

∂tuþ u · ∂u ¼ −
∂p
ρa

þ ν∂2u − βgT; ð1Þ

∂ · u ¼ 0; ð2Þ

∂tT þ u · ∂T ¼ κ∂2T; ð3Þ

where ρa is the (constant) ambient density, β is the thermal
expansion coefficient, and g ¼ ð0; 0;−gÞ is the gravita-
tional acceleration, acting perpendicularly to the flow
direction. In Eq. (3), κ is the thermal diffusion coefficient
and ν ∼ κ in Eq. (1) the kinematic fluid viscosity [10]. Our
focus will be on the cloud evolution after a time t larger
than t0, the time of the end of the injection process when the
inlet velocity is set to 0 and the cloud is let to evolve freely,
i.e., the puff regime [11].
The time evolution of the bulk properties of a puff (its

mean radius L, its bulk velocity uL, and its mean temper-
ature TL; see Fig. 1 for a sketch) can be obtained in terms of
simple reasoning based on momentum conservation [12].
Their expressions read L ∼ L0ðt=t0Þ1=4, uL ∼ u0ðt=t0Þ−3=4,
and TL ∼ T0ðt=t0Þ−3=4, which are well known (except the
decaying law for temperature) from the seminal Ref. [5].
These scaling behaviors serve here as a benchmark for our
fully resolved numerical simulations of the puff dynamics;
Fig. 2 (top) shows the excellent agreement for t=t0 ≳ 1
between the results from our simulations and the theoretical
predictions.

Surprisingly, no substantial advances have been regis-
tered in the past 45 years, and these results still remain the
only reference predictions for puffs ejected in an initially
quiescent homogeneous flow. In this Letter, we aim at
filling the gap acting on two different directions: (i) We
complete the analysis of bulk properties by identifying a
new scaling regime corresponding to the limit of strong
buoyancy. (ii) Bulk properties constitute only a small
subset of dynamical properties in turbulence. Here, we
broaden the horizon by proposing a theory in the spirit of
Kolmogorov and Obukhov for inertial-range small-scale
fluctuations of both velocity and temperature.
Starting from (i), a simple power counting suggests that

for t ≫ tb ≡ u0=ðβgT0Þ buoyancy in Eq. (1) overcomes
eddy viscosity [5], originating new scaling laws for L, uL,
and TL that are dictated by thermal instabilities rather than
by mechanical instabilities [12]. Their expressions read
L ∼ L0ðt0=tbÞ1=4ðt=t0Þ1=2, uL ∼ u0ðt0=tbÞ1=4ðt=t0Þ−1=2, and
TL ∼ T0ðtb=t0Þ3=4ðt=t0Þ−3=2. If virus-containing liquid
droplets were carried by the puff as in human exhalations
[19–21], their condensation process would also change
with impact on the contagion spread. Figure 2 (bottom)
shows the emergence of the new scaling law for t≳ tb
detected from our numerical simulations for a case having a
larger buoyancy than that reported in Fig. 2 (top).

FIG. 1. Side view of a puff at t=t0 ≈ 5 [corresponding to
Re ¼ LðtÞuLðtÞ=ν ≈ 4500] from our simulation results. The color
contour shows the magnitude of the vorticity field.

FIG. 2. Scaling laws for the bulk properties of the puff L (blue
circle), uL (red square), and TL (green triangle, divided by a
factor of 2 for graphical reasons), for (top) the shear-induced and
(bottom) the buoyancy-induced fluctuation cases with
βgT0L0=u20 ≈ 0.05 and 0.15, respectively. In the two panels,
the solid and dash-dotted lines represent the expected scaling
laws for the shear-induced and buoyancy-induced fluctuation
regimes, respectively.
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Having focused our attention on bulk properties, we now
need to investigate issue (ii) on whether turbulent small-
scale activity can be described in terms of classical theory
à la Kolmogorov [6,7]. The idea is that, despite the fact that
the problem at hand is not stationary and, thus, very far
from the classical playground of the Kolmogorov theory,
small scales of turbulence might rapidly relax to the
slower large-scale dynamics. This is the essence of the
adiabaticity hypothesis leading to a generalization of
the classical Kolmogorov theory. Accordingly, the two-
point velocity fluctuations behave as a power law in the
inertial range of scales ηðtÞ ≪ r ≪ LðtÞ, with η being the
Kolmogorov scale equal to ηðtÞ ∼ η0ðt=t0Þ5=8 and ηðtÞ ∼
η0ðt0=tbÞ−1=8ðt=t0Þ1=2 for shear-induced and for buoyancy-
induced fluctuations (SIF and BIF, respectively) [12],
where η0 denotes the Kolmogorov scale at t ¼ t0, namely,
η0 ¼ ν3=4ϵ−1=40 , with ϵ0 denoting the energy flux at t ¼ t0,
namely, ϵ0 ¼ u30=L0. Thus, we obtain for the two cases

δruðtÞ ∼ u0

�
r
L0

�
1=3

�
t
t0

�
−5=6

SIF; ð4Þ

δruðtÞ ∼ u0

�
r
L0

�
1=3

�
t0
tb

�
1=6

�
t
t0

�
−2=3

BIF; ð5Þ

where δru is the velocity difference between points at
distance r. To arrive at Eqs. (4) and (5), we have supposed
that buoyancy is important only to dictate the large-scale
balance, being negligible within the inertial range of scales.
A similar scenario has been found to hold in other
convective systems as, e.g., Rayleigh-Taylor turbulence
[22–26].
The viscous scaling laws (i.e., valid for r≲ η) follow by

the smooth character of viscous fluctuations. Namely, from
δru ∼ ðr=ηÞδηu, one gets

δruðtÞ ∼ r

�
ϵ0
ν

�
1=2

�
t
t0

�
−5=4

SIF; ð6Þ

δruðtÞ ∼ r

�
ϵ0
ν

�
1=2

�
t0
tb

�
1=4

�
t
t0

�
−1
BIF: ð7Þ

Because the ratio ðL=ηÞ3 is a measure of the active degrees
of freedom in a turbulent system [27], from our estimations
different scenarios emerge depending on whether buoyancy
is important or not. In particular, while this number does
not depend on time when buoyancy is dominant, it does if
fluctuations are mechanically driven.
For temperature differences between points at distance r,

δrT, the adiabatic generalization of Obukhov-Corrsin
theory of passive scalar advection [28,29] yields the
following inertial-range scaling laws [12]:

δrTðtÞ ∼ T0

�
r
L0

�
1=3

�
t
t0

�
−5=6

SIF; ð8Þ

δrTðtÞ ∼ T0

�
r
L0

�
1=3

�
tb
t0

�
5=6

�
t
t0

�
−5=3

BIF; ð9Þ

accompanied by the smooth diffusive scaling behaviors,
δrT ∼ ðr=ηÞδηT, for r≲ η:

δrTðtÞ ∼ r

�
ε0
ν

�
1=2

�
t
t0

�
−5=4

SIF; ð10Þ

δrTðtÞ ∼ r

�
ε0
ν

�
1=2

�
t0
tb

�
−3=4

�
t
t0

�
−2
BIF: ð11Þ

In all cases, we have defined ε0 ¼ u0T2
0=L0 as the flux of

temperature variance at t ¼ t0.
In order to verify our theory, we need to translate the

mean-field predictions for both velocity and temperature
fluctuations in terms of measurable observables. The most
natural statistical quantities to assess are the structure
functions, i.e., the moments of scale-dependent fluctua-
tions: for the velocity SkpðrÞ ¼ hðδru · r̂Þpi (longitudinal)
and for the temperature SpðrÞ ¼ hðδrTÞpi. Here, r̂ denotes
the unit vector connecting two points separated by a
distance r, and brackets the average in space and over
different experiment realizations. Space averages are
exploited here to define isotropized or homogenized
observables, from which to assess scaling behaviors as a
function of the separation r and time.
The simplest predictions for the scaling behaviors of the

structure functions can be formulated from Eqs. (4), (5),
(8), and (9) via simple power counting. However, such a
mean-field approach does not account for intermittency
corrections which are typical for both velocity [27] and
temperature fluctuations [30–34] in turbulence. Our claim
here, coherently with the adiabaticity hypothesis, is that the
present system possesses the same spatial scaling expo-
nents as those of the stationary, homogeneous, and iso-
tropic turbulent system hosting a passively behaving scalar.
Our predictions for a structure function of the order of p are
thus built, dimensionally, from Eqs. (4) and (5) and from
Eqs. (8) and (9) with a multiplicative correction due to
intermittency having the form ½r=LðtÞ�−σp (for the velocity)
and ½r=LðtÞ�−ξp (for the temperature). It is indeed known
that intermittency appears via the dimensionless factor r=L,
both for the velocity fluctuations [27] and for the scalar
fluctuations [33], which cannot be captured by dimensional
considerations. Interestingly, because L depends on time in
our case, the intermittency correction affects both the
spatial and the temporal scaling laws. Because no first-
principle theories are available for intermittency corrections
in the stationary, homogeneous, and isotropic setting, we
will consider values of σp and ξp taken from state-of-the-art
numerical simulations of ideal turbulence [35]. As a result
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[12], our model for the inertial-range behavior of the pth-
order structure functions becomes

SkpðrÞ ¼ Aup0

�
r
L0

�
p=3−σp

�
t
t0

�
−5p=6þσp=4

SIF; ð12Þ

SkpðrÞ ¼ Bup0

�
r
L0

�
p=3−σp

�
t0
tb

�
p=6þσp=4

�
t
t0

�
−2p=3þσp=2

BIF

ð13Þ

and

SpðrÞ ¼ CTp
0

�
r
L0

�
p=3−ξp

�
t
t0

�
−5p=6þξp=4

SIF; ð14Þ

SpðrÞ¼DTp
0

�
r
L0

�
p=3−ξp

�
tb
t0

�
5p=6−ξp=4

�
t
t0

�
−5p=3þξp=2

BIF;

ð15Þ

where A, B, C, and D are unknown nonuniversal constants.
The corresponding structure functions in the viscous or
diffusive range simply follow from Eqs. (6) and (7) and
from Eqs. (10) and (11) without any intermittency
correction.
We now verify in Figs. 3 and 4 the validity of our scaling

predictions for structure functions (in both the inertial and
viscous range of scales) in terms of our high-resolution
fully resolved direct numerical simulations. Figure 3 (top)
shows the velocity second-order structure function Sk2ðrÞ at
different time instants always larger than t0. The validity
of the proposed scaling laws can be verified by the excellent
collapse of all the structure functions when these laws
are used to normalize the data [Figs. 3 (middle) and 3
(bottom)]. In particular, Fig. 3 (middle) shows the same
data of three-top scaled with the temporal scaling law (12)
expected to hold in the inertial range of scales. The region
where a clean data collapse does appear defines the
universal inertial range of scales. Consistently, we observe
data spreading in the viscous range. This fact has a simple
interpretation being due to the different decay laws char-
acterizing the viscous range and the inertial range of scales.
To show that this is indeed the case, in Fig. 3 (bottom) we
have rescaled the ordinate in Fig. 3 (top) with the expected
temporal viscous scaling (6), finding data collapse in the
viscous range (and not, as expected, in the inertial range).
Moreover, in the inset in Fig. 3 (middle), we have focused
on a separation r, belonging to the inertial range and
analyzed the temporal behavior of the velocity structure
functions of the order of 2, 4, and 6. The continuous lines
are the corresponding scaling laws from our theoretical
predictions given by Eq. (12) for the orders of 2, 4, and 6.
The inset in Fig. 3 (bottom) is similar, apart from the fact
that the separation belongs to the viscous range and the
theoretical prediction (6) is used accordingly. In both cases,

an excellent agreement between theory and numerics is
found, also signaling that our model correctly captures
intermittency corrections. These latter indeed enter not only
in the spatial scaling but also in the temporal scaling laws.
Figure 4 completes the verification by looking at the

scaling laws (spatial and temporal) of high-order velocity
and temperature structure functions, with data shown in the
form of extended self-similarity (see [36]). The continuous
lines have the slopes deduced from our predictions (12) and
(14), while dashed lines do not account for the intermit-
tency corrections (i.e., they represent a pure mean-field
prediction). Different times t > t0 are considered for

FIG. 3. Top: Sk2ðrÞ for different time instants. Middle: the same
as the top panel but with the ordinates scaled by the inertial-range
temporal scaling law. Bottom: the same as the top panel but with
the ordinates scaled with the viscous temporal scaling. The insets

in the middle and bottom panels report the time histories of Sk2ðrÞ
(blue), Sk4ðrÞ (red), and Sk6ðrÞ (green) for two separations taken in
the inertial r=L0 ≈ 0.18 (middle) and viscous r=L0 ≈ 0.007
(bottom) range of scales. In all the figures, the solid lines
represent the predicted slopes. Data are for the case with
βgT0L0=u20 ≈ 0.05; analogous figures for the temperature differ-
ence are reported in lemental Material [12].

PHYSICAL REVIEW LETTERS 127, 094501 (2021)

094501-4



βgT0L0=u20 ≈ 0.05 corresponding to the shear-dominated
case. Both the excellent data collapse and the convincing
correspondence of our data with the theoretical slopes
(continuous lines) provide a further confirmation of our
predictions (12)–(15).
In conclusion, we have proposed a phenomenological

theory for a fluid puff exhaled in an undisturbed environ-
ment. The foundation of our theory is the adiabaticity
hypothesis leading to a generalization of the classical
Kolmogorov theory. Intermittency corrections have also
been inferred, assuming that a puff possesses the same
spatial scaling exponents as the ideal Navier-Stokes turbu-
lence system. The resulting statistical predictions for a
turbulent puff have been validated against state-of-the-art
numerical simulations, finding an excellent agreement. The
present work can have profound implications in the
accurate prediction of the airborne spreading of virus
where droplet evaporation, mainly controlled by the com-
bined effect of turbulence and droplet inertia [20], strongly
affects the traveled distance of the viral load [19].
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