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Nonlinear waves become asymmetric when asymmetric physical effects are present within the system.
One example is the self-steepening effect. When exactly balanced with dispersion, it leads to a fully
integrable system governed by the Chen-Lee-Liu equation. The latter provides a natural basis for the
analysis of asymmetric wave dynamics just as nonlinear Schrödinger or Korteweg–de Vries equations
provide the basis for analyzing solitons with symmetric profile. In this work, we found periodic wave trains
of the Chen-Lee-Liu equation evolved from fully developed modulation instability and analyzed a highly
nontrivial spectral evolution of such waves in analytic form that shows strong asymmetry of its
components. We present the conceptual basis for finding such spectra that can be used in analyzing
asymmetric nonlinear waves in other systems.
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Asymmetric nonlinear waves are common in hydro-
dynamics and in optics. Examples include undular bores
[1], morning glory phenomenon [2], dispersive shock
waves in optics [3], optical wave breaking [4], and
multiplicity of other phenomena in nature and in laboratory
settings [5,6]. Ocean waves are naturally nonlinear and
asymmetric with steep front and smooth tail [7]. Exact
analytic description of asymmetric waves is a challenge that
so far has not been fully resolved. There are evolution
equations with nonlinear terms responsible for the wave
asymmetry such as the Sasa-Satsuma equation (SSE) [8].
However, the SSE contains a mix of symmetric and
asymmetric nonlinear terms with their relative contribu-
tions that cannot be easily singled out. One of the equations
that allows us to study the asymmetry of nonlinear waves
caused solely by the self-steepening effect is the Chen-Lee-
Liu equation (CLLE) [9]. The self-steepening term in the
CLLE is due to the intensity dependent group velocity
[10,11]. In optics, it appears through the interplay of
quadratic and cubic nonlinearities in frequency-doubling
crystals [12]. It has been shown that the CLLE describes
phase-mismatched second-harmonic waves [13] and non-
linear waves in quadratic nonlinear media [14,15]. Validity
of the CLLE in optics has been demonstrated experimen-
tally [16].
Significance of the CLLE also lies in its integrability [9].

This means that its solutions can be presented analytically.
Moreover, based on the accurate balance of only two
physical effects—dispersion and self-steepening, this equa-
tion can be considered as one of the fundamental evolution

equations like the Korteweg–de Vries (KdV) or nonlinear
Schrödinger equations (NLSEs). However, in contrast to
the KdV and the NLSEs, it describes asymmetric waves
thus dealing with a different class of phenomena. In this
Letter, we consider periodic waves of CLLE that are
asymmetric. As in other nonlinear media, periodic waves
may emerge “from nowhere” due to modulation instability
(MI) [17]. Because of this feature, MI is one of the key
processes studied in nonlinear physics. It is at the origin of
solitons inception [18], supercontinuum generation [19],
and rogue wave events [20]. It is presently known as
Benjamin-Fair instability [21] in the case of water waves or
Bespalov-Talanov instability [22] in the case of optical
beams. In each case, the nonlinear stage of the MI scenario
is provided by the “Akhmediev breather” (AB) [23,24]. The
latter is an exact analytical solution of the standard NLSE
[25], which describes exactly both the process of the initial
growth of periodic perturbation and the following full scale
recurrent evolution back to the continuous wave. The AB
theory provides analytical results for the evolution of
multiplicity of the spectral sidebands, which is beyond
the reach of the truncated approach [26]. Because of these
unique properties, the NLSE AB has led to successful
studies of the Fermi-Pasta-Ulam recurrence [27,28], super-
continuum generation [29,30], higher-order MI effect [31],
the nonlinear phase shift [32], and created the basis for
experiments on rogue waves excitation [33].
In all these findings, the AB exhibits conspicuous

reflection symmetry in both the time and the frequency
domains. On the other hand, there is increasing numerical
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and experimental evidence that MI can reveal broken
reflection symmetry at the nonlinear stage of evolution
[29,30,34,35]. Such broken symmetry constitutes a highly
nontrivial part of spontaneous symmetry breaking in
physics [36]. It is generally attributed to coupling nonlinear
terms in the equations or higher-order effects in the model
[36]. The latter include the higher-order dispersion, self-
steepening, and stimulated Raman scattering. Despite being
vigorously investigated, they continue to pose major
challenges in our understanding of the nonlinear phenom-
ena [37,38]. The complications arise from the fact that the
higher-order terms generally break the integrability of the
resulting generalized NLSE extensions. This prevents or
causes difficulties in finding exact solutions.
In principle, infinitely many higher-order terms can be

added to the NLSE in such a way that the corresponding
equation remains integrable [39–42]. Despite being cum-
bersome, these extensions admit exact solutions. Some
extensions of the infinite hierarchy like Hirota or Sasa-
Satsuma equations result in the skewed MI dynamics,
although many others keep them symmetric [42].
The dimensionless CLLE can be written in the form [9]

i
∂ψ
∂z þ ∂2ψ

∂t2 þ ijψ j2 ∂ψ∂t ¼ 0; ð1Þ

where ψðz; tÞ is the complex wave envelope, z and t are
the propagation and transverse (or retarded time) vari-
ables, respectively. The last term in the left hand side
(ijψ j2∂ψ=∂t) describes the effect of self-steepening.
Generation of periodic waves in nonlinear media gov-

erned by Eq. (1) is described by the AB solutions of the
CLLE (1). In [43], using the Darboux transformation we
have shown the asymmetry of superregular breathers. Here,
using the same technique, we derived a family of single AB
solutions with free parameters controlling the wave train.
This family can also be obtained from a more general set of
breathers given by Eq. (23) in [43]. In concise form, the
solution can be written as

ψ ¼ ðψa − 1Þψ0; ð2Þ

where ψ0 ¼ a exp½iðqt − ðq2 þ a2qÞzÞ� denotes the con-
tinuous wave background of the CLLE with a and q being
its amplitude and frequency, respectively, and

ψa ¼
2 sin α cosh γ þ 2iρðρ sinh γ þ sin κÞ
ϵ cosh γ − ϵρ cos κ − iðsinh γ − ρ sin κÞ ; ð3Þ

with γ ¼ γz ¼ ða4 sin 2αÞz=2, κ ¼ κt ¼ ða2 sin αÞt, ρ ¼ffiffiffiffiffiffiffiffiffiffi
cos α

p
, ϵ ¼ cotðα=2Þ. Here, α is a real parameter in

the region ð0; π=2Þ, which determines the modulation fre-
quency κ ¼ a2 sin α and MI growth rate γ ¼ ða4 sin 2αÞ=2.
According to Eq. (2), the breather has a maximum

amplitude jψmaxj ¼ að1þ 2ρÞ and a minimum ampli-
tude jψminj ¼ 0.
Figure 1(a) shows the spatiotemporal amplitude profile

of the AB solution (2) in the ðz; tÞ plane. A distinctive
feature of the plot is that such AB describes the MI
dynamics with broken reflection symmetry relative to
the line z ¼ 0. Instead, from Eq. (2), it follows that the
solution has the inversion symmetry, jψð−z;−tÞj ¼
jψðz; tÞj. This symmetry is clearly visible in Fig. 1(a).
The MI stage of evolution described by the AB (2)

begins from a constant background at z → −∞. It has an
infinitesimally small modulation with frequency κ along
the t axis. Taking into account the lowest-order periodic
terms, the AB solution (2) at z → −∞ can be approxima-
ted by

ψ ¼ ψ0½1 − 2
ffiffiffi
2

p
iεe−iαρ sin α cosðκtþ π=4Þeγ�eiθ1 ; ð4Þ

where ε is a small real parameter (ε ≪ 1) and θ1 ¼ α − π is
the initial phase of the plane wave as z → −∞. This plane
wave has a periodic modulation with a phase shift equal to
−π=ð4κÞ. The exponential factor eγ shows that this initial
modulation grows with the growth rate γ.
The initial modulation is a symmetric function relative to

the point t ¼ π=ð4κÞ. When z increases, the modulation in
(4) grows exponentially and loses this symmetry. It evolves
and transforms spontaneously into a wave train with

FIG. 1. (a) Amplitude distribution jψðz; tÞj of ABs given by
Eq. (2). (b) Wave profiles of the solution shown in (a) at different
z. The AB parameters are a ¼ 1, q ¼ −0.5, α ¼ π=6. (c) Numeri-
cal MI dynamics starting from the weakly periodic initial
condition, Eq. (5). (d) and (e) Comparison between the wave
profiles of the second recurrence in (c) (framed by black solid
curve) at two different z obtained numerically (circles) and the
analytical solution (lines). The parameters in the initial conditions
are Ω ¼ 0.5, ϕ ¼ −6π=5, τs ¼ −3.044, ε ¼ 0.02. Parameters of
the AB are the same as in (a).

PHYSICAL REVIEW LETTERS 127, 094102 (2021)

094102-2



asymmetric pulses shown in Fig. 1(b) (blue curve). This
asymmetry is due to the self-steepening. For each pulse, its
peak shifts toward positive t thus, increasing the steepness
of the front edge of the pulse (red curve).
Physically, the group velocity of the pulse is intensity

dependent (i.e., vg ≡ 1=jψ j2) such that the peak of the pulse
moves at a lower speed than its wings. In other words, the
degree of asymmetry increases with propagation. The
asymmetry is maximal when the minimal amplitude of
the wave profile reaches zero [red solid line in Fig. 1(b)].
This profile can be considered as a “periodic shock wave
sequence” emerging from a weakly modulated plane wave
due to the MI. However, from this point, the degree of
asymmetry sharply decreases while the wave amplitude
continues to grow. The amplitude reaches its maximum at
z ¼ 0. The wave train shown by the black solid line in
Fig. 1(b) becomes symmetric. The process is reversed at
positive values of z. The system returns to its initial state of
a weakly modulated plane wave at z → ∞with the opposite
values of the time shift π=ð4κÞ and the phase θ2 ¼ π − α
at z → ∞.
The total phase shift Δθ between the initial (z → −∞)

and final (z → ∞) states of evolution can be calculated
exactly from Eq. (2): Δθ ¼ θ2 − θ1 ¼ 2π − 2α. This is a
carrier phase shift caused by the wave envelope being
involved in a nonlinear process, which is known as “non-
linear phase shift” (in contrast to Berry phase). This phase
shift depends on the frequency of modulation. It varies
from 0 to 2π within the instability band.
It is important to support the analytical results by direct

numerical simulations of Eq. (1). We used as initial
conditions the weakly modulated plane wave although in
a simpler form than in Eq. (4). Namely, we used

ψ ¼ ψ0f1þ εeiϕ cos½Ωðt − τsÞ�g; ð5Þ

where ε is a small real parameter (ε ≪ 1) representing the
weak modulation amplitude, ϕ is the phase, Ω and τs are
the modulation frequency and time shift, respectively. The
major parameters in Eq. (5) defining the AB dynamics in
numerical simulations are the modulation frequency Ω and
the phase ϕ. Thus, we take Ω ¼ κ, ϕ ¼ θ1 as in Eq. (4).
Numerical simulations of Eq. (1) were done using the

split-step technique with Fourier transform for solving the
linear part and the fourth-order Runge-Kutta method for
solving the nonlinear part of the CLLE. In order to reduce
the numerical error accumulating in the form of high-
frequency noise, we multiplied the solution in the fre-
quency domain (2) by a super-Gaussian function.
The results of numerical simulations with the initial

condition (5) are shown in Fig. 1(c). Unavoidable deviation
from the exact separatrix results in periodic trajectories.
Three full cycles of a periodic orbit close to the separatrix
can be observed in this plot. The second one is framed by a
rectangular curve. The amplitude profiles in each cycle

show an excellent agreement with profiles obtained from
the exact AB solution. For comparison, we choose the two
points in z. In one of them, the wave profile is symmetric
(around z ≈ 28). The second profile is chosen at the point
where the profile has zero (around z ≈ 28.5). These two
profiles are shown in Figs. 1(d) and 1(e). The results of
numerical simulations are shown by circles while the
analytic results are given by solid curves.
Next, let us consider the physical spectra of the AB

solutions. The t-periodic solution can be written in the
form of the infinite series ψðz; tÞ ¼ P∞

n¼0 AnðzÞeinQt,
where the z-dependent amplitudes of spectral harmonics
(n ¼ 0;�1;�2;…) are given by

AnðzÞ ¼
Q
2π

Z
2π=Q

0

ψðz; tÞe−inQtdt:

For symmetric solutions, the technique for calculation of
the spectral amplitudes is well developed [23,42,44].
However, finding the spectral amplitudes of asymmetric
signals remains a challenge. Here, we provide the technique
for solving this problem. First, let us define the integral

I ¼ Q
2π

Z
2π=Q

0

ψaðz; tÞe−inQtdt

for an asymmetric signal ψa. Changing variable t in the
integrand to the complex one Z ¼ eiQt yields

I ¼ i
π

Z
C
JZ−ndZ; ð6Þ

where C is a contour of integration in the form of a unit
circle around zero while

J ¼ 2 sin α cosh γ þ 2iρ2 sinh γ þ ρðZ − Z−1Þ
ρðϵ − 1ÞðZ − Z1ÞðZ − Z2Þ

; ð7Þ

with Z1;2 being the roots of the binomial in the denomi-
nator

Zj ¼
1

ρðϵ − 1Þ ðϵ cosh γ − i sinh γ ∓ ΔÞ; j ¼ 1; 2; ð8Þ

where Δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2ð1 − ϵ2Þ þ ðϵ cosh γ − i sinh γÞ2

p
. It is easy

to see that one of the roots in (8), say Z1, is inside the unit
circle while the other one, say Z2, is outside.
Before using the residue theorem for calculation of the

integral, let us consider the term ρðZ − Z−1Þ in the
numerator of J in Eq. (7). Clearly, the point Z ¼ 0 is
inside the unit circle. This fact makes the calculation of the
integral more difficult. It ultimately results in the asym-
metry of the spectral harmonics at positive and negative
frequencies. We have to consider the residue at Z ¼ 0,
which we denote as R0, on a case-by-case basis: (1) When
n ¼ 0, we have
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R0 ¼ JZjZ¼0 ¼ −
1

ðϵ − 1ÞZ1Z2

¼ −
1

1þ ϵ
: ð9Þ

(2) When n ≤ −1, the pointZ ¼ 0 is not a singularity in the
expression JZ−n, which means that R0 ¼ 0. (3) When
n ≥ 1, the point Z ¼ 0 in the expression for JZ−n is a
(nþ 1)-order singularity. The residueR0 in this case can be
calculated using the formula [45]

R0 ¼
1

n!
dn

dZn JZ−nZnþ1jZ¼0 ¼
1

n!
dn

dZn JZjZ¼0: ð10Þ

On the other hand, the residue at Z ¼ Z1 in the
expression JZ−n, which we denote as RZ1

, is given by
RZ1

¼ LZ−n
1 , where L ¼ J ðZ − Z1ÞjZ¼Z1

. The explicit
expression for L is

L¼ 1

2Δ
½2sinαcoshγþ 2iρ2 sinhγþ ρðZ1 −Z−1

1 Þ�: ð11Þ

Collecting the results above and applying the residue
theorem to the integral (6), we have I ¼ −2ðR0 þRZ1

Þ.
Thus, for the central component (n ¼ 0), we have

A0ðzÞ ¼ −2L −
1 − ϵ

1þ ϵ
; ð12Þ

while for the sidebands (the harmonics), we have

AnðzÞ ¼ −2LZ−n
1 þ F ; ð13Þ

where F ¼
n
0; n ≤ −1;
−2ð1=n!Þðdn=dZnÞJZjZ¼0; n ≥ 1:

Equations (12) and (13) describe explicitly the evolution
of the infinite number of spectral components. In particular,
Eq. (13) clearly shows that the spectral amplitudes of
harmonics are asymmetric with respect to the central
component.
Figure 2 shows the evolution of the AB spectral

amplitudes according to (a) our analytical solutions and
(b) numerical simulations. Remarkably, in each case, this is

an asymmetric discrete spectrum. The energy of the central
mode spreads asymmetrically to the sidebands during the
MI growth-decay cycle. At the initial stage of the MI with
the exponential growth of modulation, the energy is
transferred from the central mode to the two nearest
sidebands. However, due to the self-steepening effect,
the sideband amplitudes at positive and negative frequen-
cies are asymmetric relative to the pump. The asymmetry
increases closer to the point of maximum modulation. At
the very point of the maximum modulation, the energy of
the central mode reaches its minimum while the energy of
each higher-order harmonic reaches its maximum. The
process is reversed beyond this point and the system returns
to its initial state of a plane wave at z → ∞. Just as in the
time domain, the analytical AB spectrum exhibits one
growth-return cycle. In the case of numerical simulations,
the spectrum is periodic. It contains three full periods of
evolution.
To further understand the asymmetry of the AB spec-

tra, we explore them in the phase plane (jA�nj cosϕ�n,
jA�nj sinϕ�n), where A�n denotes the spectral amplitude
and ϕ�n is the corresponding phase. In Fig. 3, we compare
the results of the numerical simulations and the spectral
components calculated analytically, up to the third har-
monic n ¼ �3. The second period is chosen for compari-
son, although, for each period of the numerical simulations
the data show excellent agreement with the analytical AB
spectra.
The phase trajectory of the central spectral mode in

Fig. 3(a) is an unclosed curve. The starting and ending
points of the curve are different. This is due to the nonlinear
phase shift defined by Δθ. On the other hand, the phase

FIG. 2. (a) Analytical AB spectrum given by Eqs. (12) and (13).
This corresponds to the AB evolution in z shown in Fig. 1(a).
(b) Numerical AB spectrum that corresponds to the AB evolution
in z shown in Fig. 1(c). The spectra are asymmetric relative to the
central component.

FIG. 3. The evolution of the AB spectral components on the
(jA�nj cosϕ�n, jA�nj sinϕ�n) plane, up to n ¼ �3. Analytical
results are depicted in solid lines. Numerical simulations are
presented by crosses chosen at discrete points of the second
period in Fig. 2(b). Panel (a) shows the evolution of the central
frequency component. Panels (b)–(d) show the evolution of the
nth component. Right hand side sidebands (n > 0) are shown in
black while the left hand side sidebands (n < 0) are shown in red.
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trajectories of the sidebands shown in Figs. 3(b)–3(d) start
and end at the same point (at the origin). Their shape
depends on the order of the spectral component �n.
Moreover, in contrast to the symmetric spectra of the
NLSE ABs, when the sideband pairs share the same orbit,
the phase trajectories of sideband pairs here are asymmetric
and represent different orbits. For clarity, they are shown in
red and black colors in Figs. 3(b)–3(d). Positive sidebands
(n > 0) are located on the right hand half-plane of the phase
plane while negative sidebands (n < 0) are located in both
half-planes. The size of the orbits of the sidebands
decreases with increasing jnj.
In conclusion, we have studied analytically the dynamics

of periodic wave trains governed by the CLLE that is based
on the sole balance of dispersion and the self-steepening
effect. As such, this equation describes the asymmetric
nonlinear waves. Moreover, this equation is integrable
providing the ways to find its solutions in analytic form.
Thus, in mathematical physics, it has a significance of the
KdVandNLSEbut in contrast to them it inherently describes
asymmetricwaves. Itwas also shown thatwaves governedby
this equation can be studied experimentally [16].
For experimental observations in optics, it is highly

important to know the physical spectra of the solutions.
Although integrability of the equation allowed us to find the
exact AB solutions in time, it does not guarantee that the
physical spectra can be also found analytically. We keep in
mind that these are different from the spectra of the inverse
scattering technique. Finding physical spectra of periodic
solutions is a nontrivial task. This was recently demonstrated
with periodic solutions of the NLSE [44]. Here, as an
example, we studied the periodic waves and the AB
dynamics of the CLLE and importantly, we found their
spectra also analytically. Moreover, we provided here the
conceptual basis for such nontrivial calculations.As far aswe
know, the asymmetric ABs and their physical spectra have
not been presented analytically in any of the previous works.
We stress that analytic results have a clear advantage

over numerical calculations. They allow one to analyze the
phenomenon for the whole family of multiparameter
asymmetric nonlinear waves using the analytic results in
hands. Taking into account that the CLLE can be realized in
experiments, the possibility of such analysis opens new
ways in the studies of asymmetric nonlinear waves. The
technique can also be generalized to many other models
that admit the asymmetric nonlinear waves. For example,
the theory can be extended to optical models with vector
fields where the ABs exhibit significantly richer struc-
tures [46,47].
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