
Axial Anomaly in SUðNÞ Yang-Mills Matrix Models

Nirmalendu Acharyya ,1,* Mahul Pandey,2,† and Sachindeo Vaidya3,‡
1School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha 752050, India

2School of Theoretical Physics, Dublin Institute for Advanced Studies, Dublin 4 D04 C932, Ireland
3Centre for High Energy Physics, Indian Institute of Science, Bengaluru 560012, India

(Received 28 April 2021; accepted 5 August 2021; published 27 August 2021)

The SUðNÞ Yang-Mills matrix model admits self-dual and anti-self-dual instantons. When coupled to
Nf flavors of massless quarks, the Euclidean Dirac equation in an instanton background has nþ positive
and n− negative chirality zero modes. The vacua of the gauge theory are N-dimensional representations
of SU(2), and the (anti-) self-dual instantons tunnel between two commuting representations, the initial

one composed of rð1Þ0 irreps and the final one with rð2Þ0 irreps. We show that the index (nþ − n−) in such a

background is equal to a new instanton charge T new ¼ �½rð2Þ0 − rð1Þ0 �. Thus T new ¼ ðnþ − n−Þ is the matrix
model version of the Atiyah-Singer index theorem. Further, we show that the path integral measure is not
invariant under a chiral rotation, and relate the noninvariance of the measure to the index of the Dirac
operator. Axial symmetry is broken anomalously, with the residual symmetry being a finite group. For Nf

fundamental fermions, this residual symmetry is Z2Nf
, whereas for adjoint quarks it is Z4Nf

.

DOI: 10.1103/PhysRevLett.127.092002

Introduction.—A symmetry of a classical theory that
cannot be implemented in its quantum counterpart is said to
be broken anomalously. Awell-known example of such an
anomaly occurs in gauge theories with massless Dirac
fermions Ψ. The classical action is invariant under the
vector rotation Ψ → eiαΨ as well as the axial rotation
Ψ → eiαγ

5Ψ, but the latter is anomalously broken [1,2].
This is the axial anomaly, which manifests in the
nonconservation of the axial current jμA ¼ Ψ̄γμγ5Ψ in the
quantum theory. Rather than ∂μj

μ
A ¼ 0, we have

∂μj
μ
A ∼ ϵμνρσFμνFρσ , where Fμν is the gauge curvature.
As argued by Fujikawa [3,4], the origin of the axial

anomaly may be understood by examining the Euclidean
path integral

R
DΨ̄DΨe−SFE , where SFE ¼ R

d4xiΨ̄=DΨ is the
fermionic action and =D is the gauge-covariant Dirac
operator. Expanding Ψ and Ψ̄ in the basis of eigenfunctions
of =D shows that although SE is invariant under axial
rotations, the measure DΨ̄DΨ is not. The change in the
measure is related to the index of the Dirac operator, which
in turn is related to the instanton number

R
d4xϵμνρσFμνFρσ

via the Atiyah-Singer index theorem.
In this Letter we will demonstrate a surprising result: the

quantum SUðNÞ Yang-Mills matrix model coupled to Nf

massless quarks also exhibits the axial anomaly. In quan-
tum mechanical situations, anomalies appear when the
symmetry operation does not preserve the domain of the
Hamiltonian [5–7]. For instance, the Hamiltonian of a free
particle on a circle has a family of self-adjoint domains
Dφ ¼ ffðxÞ ∈ L2½−π; π�∶fðxþ πÞ ¼ eiφfðx − πÞg. For
φ ≠ nπ, parity transformation P∶x → −x, a classical sym-
metry, changes the domain Dφ → D−φ, resulting in the
anomalous breaking of P [6]. Another example, where the
classical scaling symmetry S∶r → μr, p → μ−1p is anoma-
lously broken has been discussed in careful detail by
Jackiw [7]. Anomalies have also been reported in discrete
lattice formulations of Kähler-Dirac fermions [8].
Such anomalies have been shown to play an important

role in the possible phases of θ-QCD (quantum chromo-
dynamics) [9,10]. Our demonstration of the axial anomaly
closely follows the Euclidean approach: we show that there
exist zero modes of the Euclidean Dirac operator in the
background of (anti-) self-dual instanton gauge configura-
tions, and the index of =D is nonzero.
In the matrix model, the instantons tunnel between the

classical vacua Ai ¼ Li, where Li’s are the generators of
SU(2) in any N-dimensional representation, with r0 irreps
(irreducible representations). The (anti-) self-dual instan-
tons tunnelling between two distinct classical vacua say

Lð1Þ
i with rð1Þ0 irreps and Lð2Þ

i with rð2Þ0 irreps can be

associated with a new charge T new ≡ ½rð2Þ0 − rð1Þ0 �. As we
will demonstrate, the index of =D is equal to T new, giving us
the matrix model version of the Atiyah-Singer index
theorem. Finally, we relate the index to the noninvariance
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of the path-integral measure, which gives the anomaly. For
the fermions in the fundamental representation of SUðNÞ
(i.e., quarks), there remains a residual Z2Nf

symmetry,
while for adjoint fermions the residual symmetry is Z4Nf

.
We emphasize that our result holds for any color N ≥ 2.
The surprise here is that the SUðNÞ matrix model is

vastly different from SUðNÞ gauge field theory. In the
field theory, distinct instantons are labeled by the instanton
charge π3½SUðNÞ� ¼ Z, whereas in the corresponding
matrix model, they are labeled by a finite set of integers.
But even though the number of distinct instantons is finite,
it is enough to disturb the balance between left- and right-
handed fermion zero modes, leading to the anomalous
breaking of axial symmetry.
The matrix model discussed here was first presented in

[11–13], and has been shown to be an excellent candidate
for an effective low-energy approximation of SUðNÞ Yang-
Mills theory on S3 ×R. In particular, numerical inves-
tigations of its spectrum gave excellent estimates for the
low-lying glueball and hadron masses [14,15]. However, to
serve as a correct low-energy approximation of Yang-Mills
theory, this quantum-mechanical model must also exhibit
the axial anomaly. Our present work provides this impor-
tant conceptual support.
The matrix model—The dynamical degrees of freedom

of the model are elements of MN , the set of all
3 × ðN2 − 1Þ-dimensional real matrices Mia, or equiva-
lently Ai ¼ MiaTa, Ta being the generators of SUðNÞ in the
fundamental representation. Gauge transformations act
on Ai via the adjoint action Ai → hAih−1, h ∈ SUðNÞ.
The configuration space is the base space of principle
bundle Ad SUðNÞ → MN → MN=AdSUðNÞ. This fiber
bundle being twisted [16,17], lies at the heart of the Gribov
problem in Yang-Mills theory.
To describe the dynamics, we need to define a gauge-

covariant time derivative of Ai. For that, we introduce a
set of time-dependent real functions, conveniently named
as M0a, and the matrix A0 ≡M0aTa. A0 is the parallel
transporter needed to define the covariant derivative along
the temporal direction and under a gauge transformation
hðtÞ ∈ SUðNÞ, A0 → A0

0 ¼ hA0h−1 − _hh−1. Then, the
gauge-covariant time derivative of Ai is defined as

DtAi ¼ _Ai − i½A0; Ai�: ð1Þ

which transforms as DtAi → hðDtAiÞh−1.
The curvature Fij is obtained by the pullback of the

Maurer-Cartan equation of SUðNÞ to S3:Fij¼−ϵijkR−1Ak−
i½Ai;Aj�, where R is the radius of the S3 (for a derivation
of the matrix model, see the Supplemental Material [18]).
The chromoelectric field Ei ≡DtAi and the chromomag-
netic field Bi ≡ 1

2
ϵijkFjk are given by

Ei ¼ _Ai − i½A0; Ai�; Bi ¼ −
1

R
Ai −

i
2
ϵijk½Aj; Ak�: ð2Þ

The Yang-Mills Lagrangian is

LYM ¼ R3

g2
½TrðDtAiÞ2 − VðAÞ�; VðAÞ≡ TrBiBi: ð3Þ

The quarks Ψ are Grassmann-valued matrices that
depend only on time, and transform in the fundamental
representation of SUðNÞ and in the spin-1

2
representation

of spatial rotations. The Lagrangian with minimally
coupled massless quarks is L ¼ LYM þ LF where LF ¼
R3Ψ̄½iγ0Dt þ γiAi − ð3=2RÞγ5γ0�Ψ is the gauge-covariant
Dirac Lagrangian [13,19]
It is convenient to rescale to dimensionless variables

Aμ → RAμ, Ψ → R3=2Ψ, and t → R−1t. Then performing a
Wick rotation t → −iτ and A0 → iA0 in L gives us the
Euclidean action SE ¼ SYME þ SFE [20] with

SYME ¼ 1

g2R

Z
dτ½TrEiEi þ V0�; SFE ¼ 1

R

Z
dτΨ†i=DΨ;

ð4Þ

where Eið≡Ea
i TaÞ ¼ ð∂Ai=∂τÞ − ½A0; Ai� is the Euclidean

chromoelectric field, and the potential V0 ¼ ðAi þ
ði=2Þϵijk½Aj; Ak�Þ2 is obtained by setting R ¼ 1 in (3). =D
is the Euclidean Dirac operator, i=D ¼ ð∂=∂τÞ − A0 −
γ0γiAi − 3

2
γ5. As, the R and g dependence of SYME and

SFE is just via multiplicative prefactors, we choose R ¼ 1

and g ¼ 1 without any loss of generality.
The classical action SE is indeed invariant under the axial

rotation Ψ → eiαγ
5Ψ and has Uð1ÞA symmetry. However as

we demonstrate below, the quantum effects do not preserve
this symmetry.
Classical vacuum configurations of Eq. (3) are given by

those Ai which satisfy VðAÞ ¼ 0, i.e., ½Ai; Aj� ¼ iϵijkAk.
This has solutions Ai ¼ Li, where Li are generators of the
Lie algebra of SU(2). There are multiple degenerate vacua
which correspond to the matrices Ai forming a general N-
dimensional representation of Li.
The tunnelling between degenerate classical minima

is captured by instantons, the finite action solutions of
equations of motion of SYME in Eq. (4). This action is
extremized when Ei ¼ �Bi, whose solutions with a plus
(minus) sign give the self-dual (anti-self-dual) instantons.
Using the gauge freedom, the self-dual equation can be

transformed to the temporal gauge A0 ¼ 0 to read

dAi

dτ
¼ �

�
−Ai −

i
2
ϵijk½Aj; Ak�

�
: ð5Þ

Substituting the ansatz
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Ai ¼ ϕðτÞLð1Þ
i þ ½1 − ϕðτÞ�Lð2Þ

i ; ½Lð1Þ
i ; Lð2Þ

j � ¼ 0 ð6Þ

into Eq. (5), we obtain

∂ϕs

∂τ ¼ −ϕsð1 − ϕsÞ;
∂ϕa

∂τ ¼ ϕað1 − ϕaÞ; ð7Þ

which have solutions

ϕsðτÞ ¼
1

1þ eðτ−τ0Þ
; ϕaðτÞ ¼

1

1þ e−ðτ−τ0Þ
: ð8Þ

Here, s denotes the self-dual instanton, and a denotes the

anti-self-dual instanton. If ½Lð1Þ
i ; Lð2Þ

j � ≠ 0, we would have
to solve the second order equation of motion instead of the

simpler first order Eq. (5). In general, LðαÞ
i is a direct sum of

rðαÞ0 irreps with each irrep LðαÞ;r
i with jðαÞr ¼ ½ðNðαÞ

r − 1Þ=2�.
If we gauge transform the solutions by hðτÞ to obtain a

nonzero A0, the transformed instanton solutions go

between Lð1;2Þ
i and hbL

ð2;1Þ
i h−1b , where hb ¼ hð−∞Þ for

the self-dual and hb ¼ hð∞Þ for the anti-self-dual instan-
ton. This does not affect any of the subsequent arguments,
since we focus only on gauge-invariant quantities. These
instanton solutions have been studied earlier by [21,22] in a
different context.
The instanton number T ¼ c

R
∞
−∞ dτTrEiBi is the inte-

gral of a total derivative. The normalization factor c is fixed
to 4 so that T is an integer. For the (anti-) self-dual
instantons

T s ¼ −T a ¼
2

3

X2
α¼1

ϵαβ
XrðαÞ0

r¼1

jðαÞr ½jðαÞr þ 1�½2jðαÞr þ 1�: ð9Þ

However for the (anti-)self-dual instanton, we can construct

another charge that is expressible only in terms of rðαÞ0 ,

the number of irreps at τ ¼ �∞. Defining E0
i ≡

ðdϕs=a=dτÞ½eð2Þi − eð1Þi � with

eðαÞi ¼ ⨁
rðαÞ
0

r¼1

eðαÞ;ri ; eðαÞ;ri ¼ 3

½jðαÞr þ 1�½2jðαÞr þ 1�
LðαÞ;r
i ;

ð10Þ

the new charge is given by

T new ¼ 4

Z
dτTrE0

iBi ¼ �½rð2Þ0 − rð1Þ0 �: ð11Þ

T new is still an integral of a total τ derivative and depends

only on ½rð2Þ0 − rð1Þ0 �, rather than the Casimirs or other labels
of each individual irrep. As we will demonstrate below,

T new for a (anti-)self-dual instanton is equal to the index of
the Dirac operator.
Index of =D.—The Dirac operator obeys f=D; γ5g ¼ 0 and

consequently, for every eigenfunction ψn of =D with a
nonzero eigenvalue λn, there is an eigenfunction γ5ψn
with eigenvalue ð−λnÞ. The eigenfunctions with zero
eigenvalue (the zero modes) can also be arranged to be
eigenfunctions of γ5:

=Dχ�k ¼ 0; γ5χ�k ¼ �χ�k ; k ¼ 1; 2;…; n�: ð12Þ

but nþ and n− need not be equal. The index of =D is defined
as ind=D ¼ nþ − n−.
In the Weyl basis, the Dirac operator is

=D ¼
�

0 L

L† 0

�
; L≡ −i

�
d
dτ

− A0 þ σiAi þ
3

2

�
: ð13Þ

We solve for the zero modes ΨαA of =D in the temporal
gauge. If A0 ≠ 0, the corresponding zero mode is obtained
via a gauge transformation on Ψ. In any case, n� and the
index do not change under the gauge transformation, and
we can make our entire argument in temporal gauge.
For the (anti-) self-dual instanton, σiAiðτÞ þ 3=2 is a

2N-dimensional Hermitian matrix whose eigenvalues ξiðτÞ
are time dependent, but the eigenvectors are not. So L can
be diagonalized and =D brought to the form

=D ¼
�

0 Ld

L†
d 0

�
; Ld ¼ −i

�
d
dτ

þ Σ
�
; ð14Þ

where Σ ¼ diag½ξ1ðτÞ; ξ2ðτÞ;…; ξ2NðτÞ�. In the new basis,
the positive and negative chirality zero modes are of the
form χþ¼ð0;ψþÞT and χ− ¼ ðψ−; 0ÞT , respectively, where
the ψ� satisfy Ldψ

þ ¼ 0 and L†
dψ

− ¼ 0. The index is
given by ind=D ¼ dim KerðLdÞ − dim KerðL†

dÞ.
For the Dirac operator [Eq. (14)], there is a neat way to

determine the index from ξiðτ → �∞Þ using Callias’ index
theorem [23]:

ind=D ¼ 1

2

X2N
i¼1

½sgnξiðτ → −∞Þ − sgnξiðτ → ∞Þ�: ð15Þ

Let us apply Eq. (15) to the simple case when

Ai ¼ ϕs=aðτÞLi, i.e., when Lð2Þ
i ¼ 0 and Lð1Þ

i ¼ Li. Say
Li consists of r0 irreducible blocks with each block of
dimension Nr ≡ ð2jr þ 1Þ. In each block, σiAi þ 3=2 is a
2Nr-dimensional matrix and has (Nr − 1) degenerate
eigenvalues λ1;s=a ≡ 1

2
½3 − ϕs=aðτÞðNr þ 1Þ�, and (Nr þ 1)

degenerate eigenvalues λ2;s=a ≡ 1
2
½3þ ϕs=aðτÞðNr − 1Þ�.

As λ2;s=a > 0 has same sign at both τ ¼ −∞ and τ ¼ ∞,
their contribution in Eq. (15) vanishes, and consequently
the index in (anti-) self-dual background is
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ind=Ds ¼
1

2

Xr0
r¼1

ðNr − 1Þ
�
1 −

2 − Nr

j2 − Nrj
�
¼ −ind=Da: ð16Þ

For each block with Nr > 2, the term in the square brackets
above evaluates to 2. There exist Nr − 1 normalizable zero
modes of =D with one chirality (þ1 for the self-dual
instanton background and −1 for anti-self-dual one) and
none with the opposite chirality. For blocks with Nr ¼ 1,
the index evaluates to 0 and consequently there are no
normalizable zero modes.
For the blocks with Nr ¼ 2, it seems at first sight that the

index [Eq. (16)] is undefined. For this case, one eigenvalue
of Σ vanishes at either τ ¼ −∞ or þ∞, depending on
whether the background is self-dual or anti-self-dual. Thus
for large jτj, the Dirac operator resembles that of a free
particle. The corresponding zero mode is not strictly
normalizable but is delta-function normalizable: it is a
zero energy resonance, or a threshold state.
We show the normalizable and the non-normalizable

zero modes for Nr ¼ 2 and Nr ¼ 3 in Fig. 1 (explicit
form of the solutions ψ�

s=a;n is given in the Supplemental
Material [18]).
As we shall see below, both zero modes and zero energy

resonance states have a nonzero contribution to the axial
anomaly. To correctly take into account all contributions,
one must extend the definition of ind=D to include zero
modes as well as zero energy resonances with positive and
negative chirality [24].
In general for the ansatz [Eq. (6)], we find that ind=Ds ¼

−ind=Da ¼ rð2Þ0 − rð1Þ0 , where rðαÞ0 is the number of irreps in

LðaÞ
i . Thus the index is equal to T new defined in Eq. (11).

This yields the matrix model version of the Atiyah-Singer
index theorem

ind=D ¼ T new: ð17Þ

We emphasize that T new is a quantity computed from the
pure gauge sector, while ind=D counts the difference
between the number of fermion zero modes of opposite
chiralities. It is remarkable that there exists such a simple
relation between the two: a priori, there is no reason to
expect this equality. Moreover, as we will show further
below, this relation between the charge and the index can be

suitably adapted for adjoint fermions as well, hinting
toward its universal nature in the context of the matrix
model. Despite the demonstration of this equality, we are
not aware of an explanation of its geometric or topological
origin.
Noninvariance of fermion measure.—We adapt

Fujikawa’s method to demonstrate the axial anomaly and
its relation to ind=D. Specifically, we show that under a
Uð1ÞA transformation, the measure of the fermionic path
integral is not invariant. The Jacobian of the transformation
gives the integrated anomaly.
In the fermionic path integral

R
DΨ̄DΨe−SFE , we expand

the fermionic variables Ψ ¼ P
anΦn and Ψ̄ ¼ P

n bnΦn,
where Φn’s are eigenfunctions of =D with nonzero eigen-
values, zero modes as well as zero-energy resonances.
In this basis, the fermionic path integral measure is given
by dμ≡DΨ̄DΨ ¼ Q

n;m dandbm. Under a Uð1ÞA
rotation with an angle α, the transformed variables Ψ0

can be expanded as Ψ0 ¼ P
a0nΦn, Ψ̄0 ¼ P

n b
0
nΦn where

the coefficients transform linearly: a0n ¼ Cmnam and
b0n ¼ Cmnbm.
Consequently dμ transforms as dμ → ½detC�−2dμ. The

Jacobian is ½detC�−1 ¼ e−i
R

dταAðτÞ, where the anomaly
function AðτÞ is defined as AðτÞ ¼ P

n Φ
†
nγ5Φn. In AðτÞ,

the summation is over an infinite number of modes and
hence divergent. We introduce a gauge-invariant regulator

e−β=D
2

and formally take the limit β → 0 at the end:

AðτÞ ¼ limβ→0

P
n Φ

†
nγ5e−β=D

2Φn.
We already saw that for nonzero eigenvalues, the

eigenfunctions Φn and γ5Φn of =D are orthogonal, and
hence do not contribute to the summation. However, the
zero modes and the zero-energy scattering states can have
nonzero contribution to AðτÞ.
Setting α ¼ constant, the integrated anomaly function is

Z
dτAðτÞ ¼

Z
dτ

�Xnþ
k¼1

χþ†
k γ5χþk þ

Xn−
k¼1

χ−†k γ5χ−k

�
: ð18Þ

Using Eq. (12), we get
R
dτAðτÞ ¼ ðnþ − n−Þ ¼ ind=D.

Thus in a background gauge configuration where the
Dirac operator has a nonzero index, the fermion measure is

(a) (b) (c) (d)

FIG. 1. The solutions of =Dψ�
s=a;n ¼ 0 with (a) Nr ¼ 3 in self-dual background, (b) Nr ¼ 3 in anti-self-dual background, (c) Nr ¼ 2 in

self-dual background, (d) Nr ¼ 2 in anti-self-dual background.
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not invariant under axial transformations, and axial sym-
metry is anomalously broken.

Because ind=D is always an integer, e∓2iα
R

dτAðτÞ ¼ 1
when α ¼ nπ (n ∈ Z) for any N. For axial rotations with
α ¼ nπ, the anomaly vanishes. Thus the Uð1ÞA is anoma-
lously broken to Z2, the residual axial symmetry.
For Nf flavors, the Dirac operator is diagonal in flavor.

Its spectrum is Nf copies of the spectrum of =D for a single
flavor. The axial symmetry is now broken to Z2Nf

.
Adjoint Weyl Fermion.—For supersymmetric gauge

matrix models, the adjoint Weyl fermions λ are of relevance
[25,26]. We show that axial symmetry is anomalously
broken in this case too.
The Euclidean fermionic action can be written as

SFE ¼
Z

dtλ†
�
∂τ − F 0 þ σiF i þ

3

2

�
λ ð19Þ

where F 0 ¼ M0aGa, F i ¼ MiaGa, and Ga ¼ −ifabc are
the SUðNÞ generators in the adjoint representation. As
before, we choose the temporal gauge.

For the ansatz [Eq. (6)], F i takes the form F i ¼
ϕs=aJ

ð1Þ
i þ ð1 − ϕs=aÞJ ð2Þ

i where J ðαÞ
i are the representa-

tions of SU(2) obtained by embedding LðαÞ
i in (N2 − 1)

dimensions. It is straightforward to show that J i are given
by one singlet representation removed from the following
direct sum

⨁
r;q
½ðNr þ Nq − 1Þ ⊕ ðNr þ Nq − 3Þ ⊕ � � �

⊕ ðjNr − Nqj þ 1Þ�: ð20Þ

Thus J ðαÞ
i is a direct sum of qðαÞ0 irreps J ðαÞ;q

i of dimension

N ðαÞ
q , with

PqðαÞ
0

q¼1N
ðαÞ
q ¼ N2 − 1. Just as before, we

define E0
i ¼ ðdϕs=a=dτÞ½eð2Þi − eð1Þi � and Bi ¼ −F i −

ði=2Þϵijk½F j;F k� where eðαÞi ¼ ⨁qðαÞ
0

q¼1e
ðαÞ;q
i [the eðαÞ;qi are

as in Eq. (10)]. The instanton charge for the embedding is
given by

T adj
new ¼

Z
dτTrE0

iBi ¼ �½qð2Þ0 − qð1Þ0 �: ð21Þ

The index calculation is exactly as in Eqs. (15) and (16),

by replacing NðαÞ
r with N ðαÞ

q . By correctly taking into
account the zero modes as well as the zero-energy
resonances, the index is now given by ind=D ¼ T adj

new.
In the adjoint case, all eigenvalues of =D are doubly

degenerate. For every eigenvector φn of =D with eigenvalue
λn, there exists an independent eigenvector ðσ2 ⊗ 1Þφ�
with the same eigenvalue. Consequently, the index is

always an even integer, and so e−2iα ind=D ¼ 1 when

α ¼ ðnπ=2Þ, n ∈ Z. Therefore a single adjoint Weyl
fermion breaks the Uð1ÞA axial symmetry to a residual
Z4 subgroup. For Nf flavors, the residual symmetry
is Z4Nf

.
Discussion.—Though the Yang-Mills matrix model is

very different from the corresponding field theory, it
nevertheless retains important nonperturbative features of
the field theory. As we have demonstrated here, the axial
anomaly is one such feature. In the usual discussion of the
axial anomaly in gauge field theories, only the irreducible
connections are considered, and it is the instanton number
of such connections that is related to the fermion zero
modes. A priori, there is no reason that the residual axial
symmetry in the matrix model should match the corre-
sponding field theory result, and it is surprising that
it matches for the case of fundamental fermions.
Whether this coincidence has a deeper significance requires
further investigation.
Our result on the anomaly provides a strong conceptual

support for the numerical investigations of the matrix
model [15]. In addition to reproducing the masses of light
hadrons with surprising accuracy, the numerics also show
that the pseudoscalar mesons are much lighter than their
scalar counterparts. Furthermore, it also finds the η0 meson
to be considerably heavier than the η meson. The result on
the axial anomaly presented here serves to strengthen the
position of the SU(3) gauge matrix model as an effective
low-energy approximation of QCD.
The axial anomaly is present for any SUðNÞ gauge

group, and there is no reason to expect that it is washed out
in the large N limit.
There is a plethora of matrix models inspired by [27–29]

that have been studied in the literature and which remain a
subject of continuing interest [25,30–34]. These models
have a non-Abelian gauge symmetry and fermions, and in
light of the results presented here, the implications of the
axial anomaly for these models need to be understood.
Similarly, whether this axial anomaly has a role to play in
quantum systems with emergent non-Abelian gauge sym-
metry like the multimodal Rabi model [35] is an interesting
and open question.

We thank Denjoe O’Connor and V. Parameswaran Nair
for discussions, and suggesting the use of Callias’ index
theorem.
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