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We study perturbations that break gauge symmetries in lattice gauge theories. As a paradigmatic model,
we consider the three-dimensional Abelian-Higgs (AH) model with an N-component scalar field and a
noncompact gauge field, which is invariant under U(1) gauge and SUðNÞ transformations. We consider
gauge-symmetry breaking perturbations that are quadratic in the gauge field, such as a photon mass term
and determine their effect on the critical behavior of the gauge-invariant model, focusing mainly on the
continuous transitions associated with the charged fixed point of the AH field theory. We discuss their
relevance and compute the (gauge-dependent) exponents that parametrize the departure from the critical
behavior (continuum limit) of the gauge-invariant model. We also address the critical behavior of lattice AH
models with broken gauge symmetry, showing an effective enlargement of the global symmetry, from
UðNÞ to Oð2NÞ, which reflects a peculiar cyclic renormalization-group flow in the space of the lattice AH
parameters and of the photon mass.
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Introduction.—Gauge symmetries play a key role in the
construction of the theoretical models of fundamental
interactions [1,2] and in the description of emergent phe-
nomena in condensed-matter and statistical physics [3–8].
They may be exact, as in the standard model of fundamental
interactions, or effectively emerge at low energies, as in
some many-body systems. Effectively emergent gauge
symmetries have also been discussed in the context of
fundamental interactions; see, e.g., Refs. [3,9–11]. In this
case, they may arise from microscopic interactions of a
different nature, such as string models [12].
To correctly interpret experimental results in terms of

models with an emergent gauge symmetry, a solid under-
standing of the effects of gauge-symmetry violations is
essential. This issue is crucial in the context of analog
quantum simulations, for example, when controllable
atomic systems are engineered to effectively reproduce
the dynamics of gauge-symmetric theoretical models, with
the purpose of obtaining physical information from the
experimental study of their quantum dynamics in labora-
tory. Several proposals of artificial gauge-symmetry real-
izations have been reported; see, e.g., Refs. [13,14] and
references therein (see also Refs. [15–20] for some exper-
imental realizations), in which the gauge symmetry is
expected to effectively emerge in the low-energy dynamics.

A possible strategy is that of adding a penalty term to the
Hamiltonian, which suppresses the interactions violating
the gauge symmetry. This strategy assumes that gauge-
symmetry breaking (GSB) terms become negligible at low
energies, thereby making the dynamics effectively gauge
invariant in this limit [13,21,22]. In spite of the relevance of
these issues, there is at present little understanding of the
effects of GSB perturbations on the continuum limit of
quantum or statistical systems with gauge symmetries or,
equivalently, on the critical behavior close to continuous
transitions, where long-range correlations develop, realiz-
ing the corresponding quantum field theory.
In this Letter, we address this problem by considering

three-dimensional (3D) lattice gauge theories, obtained by
discretizing the action of corresponding quantum field
theories. We study the role of GSB perturbations at the
critical transitions of gauge-invariant models, to understand
whether and when they are relevant, i.e., they break gauge
invariance in the low-energy or large-distance behavior
(continuum limit). If this is the case, GSB terms may lead to
different continuum limits, as we shall see.
The model.—As a paradigmatic model, we consider the

3D scalar electrodynamics or Abelian-Higgs (AH) field
theory, with an N-component complex scalar field ΦðxÞ
coupled to the electromagnetic field AμðxÞ. Its Lagrangian
density reads [2]

L¼jDμΦj2þwΦ�Φþu
4
ðΦ�ΦÞ2þ 1

4g2
ð∂μAν−∂νAμÞ2; ð1Þ

where Dμ ≡ ∂μ þ iAμ. The AH theory is invariant under
U(1) gauge and SUðNÞ global transformations. Its 3D
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renormalization-group (RG) flow has a stable charged
(with nonzero gauge coupling) fixed point (FP) for
N ≥ Nc [23,24], with Nc ¼ 7ð2Þ [25,26]. According to
the RG theory [27–30], the charged FP is expected to
describe the critical behavior, and therefore the continuum
limit, of U(1) gauge models with SUðNÞ global symmetry.
Lattice representations of the continuum theory (1) differ

for the topological nature of the lattice gauge field. One can
either use the real field Ax;μ as in the continuum theory
(noncompact model) or the link variables λx;μ ∈ Uð1Þ
(compact model, corresponding to eiAx;μ). In this Letter,
we mostly consider the 3D noncompact AH (NCAH)
model defined on cubic lattices of size L3, which has a
continuous transition line for N > Nc, along which the
continuum limit is described by the 3D AH field theory (1)
[25,31,32]. The fundamental fields are unit-length
N-component complex vectors zx (z̄x · zx ¼ 1) defined on
the lattice sites x and real fields Ax;μ defined on the lattice
links. The lattice action is

SAHðz;AÞ ¼ −JN
X

x;μ

2Reðz̄x · λx;μzxþμ̂Þ

þ 1

4g20

X

x;μν

ðΔμAx;ν − ΔνAx;μÞ2; ð2Þ

where λx;μ ≡ eiAx;μ , g0 is the lattice gauge coupling, μ̂ are
unit vectors along the lattice directions, and ΔμAx;ν ¼
Axþμ̂;ν − Ax;ν. The action SAH has a global SUðNÞ sym-
metry, zx → Vzx with V ∈ SUðNÞ, and a local U(1) gauge
symmetry, zx → eiθxzx and Ax;μ → Ax;μ þ θx − θxþμ̂. We
consider C� boundary conditions [25,34,35] (see also the
Supplemental Material [36]) to remove the degeneracy
under Ax;μ → Ax;μ þ 2πnμ with nμ ∈ Z, obtaining well-
defined expectation values for gauge-invariant operators
Oðz;AÞ,

hOðz;AÞi ¼
P

fz;AgOðz;AÞe−SAHðz;AÞ
P

fz;Age−SAHðz;AÞ
: ð3Þ

The phase diagram of the NCAH model (2) with N ≥ 2 is
characterized by a Coulomb phase for small J (short-
ranged scalar and long-ranged gauge correlations), a Higgs
phase for large J and small g0 (condensed scalar-field and
gapped gauge correlations), and a molecular phase for large
J and g0 (condensed scalar-field and long-ranged gauge
correlations) [25]. They are separated by three transition
lines, which are continuous or of first order depending
on N. In particular, for N > Nc ¼ 7ð2Þ, the NCAH model
undergoes continuous transitions between the Coulomb
and Higgs (CH) phases, for 0 < g20 ≲ 4. The corresponding
critical behavior is described by the charged FP of the 3D
AH field theory [25]. For g0 → 0, one has Ax;μ → 1modulo
gauge transformations, so that one recovers the Oð2NÞ

vector model. We consider the gauge-invariant bilinear
operator

Qab
x ¼ z̄axzbx −

1

N
δab; ð4Þ

which transforms as Qx → V†QxV under global SUðNÞ
transformations. It provides an effective order parameter for
the spontaneous breaking of the global SUðNÞ symmetry.
GSB perturbations.—We study how perturbations break-

ing the U(1) gauge symmetry affect the CH critical
behavior. In this exploratory study we consider the quad-
ratic perturbation

PM ¼ r
2

X

x;μ

A2
x;μ; ð5Þ

which can be interpreted as a photon mass term. Such a
mass term is generally introduced as an infrared regulator in
perturbative computations in quantum electrodynamics [2].
We also consider the local quadratic operators

PL ¼ a
2

X

x

�X

μ

ΔμAx;μ

�
2

;

PA ¼ b
2

X

x

�X

μ

nμAx;μ

�
2

; ð6Þ

where nμ is an arbitrary unit vector. When added to the
NCAH action, all quadratic terms defined in Eqs. (5) and
(6) break gauge invariance, leaving a global UðNÞ sym-
metry zx → Uzx, U ∈ UðNÞ. However, they affect the
critical behavior quite differently. The mass term (5) is
expected to be relevant at the CH transitions, since it
drastically changes the long-distance properties of the
gauge-field correlations. In particular, the Coulomb phase
disappears in the presence of a photon mass. Therefore, as
soon as the perturbation is turned on (r > 0), the system is
expected to flow out of the charged AH FP. On the other
hand, the quadratic terms PL and PA, cf. Eq. (6), may be
interpreted as the result of the Fadeev-Popov procedure for
a gauge fixing [2], being related to the Lorentz (∂μAμ ¼ 0)
and axial (n · A ¼ 0) gauge fixing [37], respectively. If they
are the only GSB perturbations present in the model, they
are expected to be irrelevant for gauge-invariant correla-
tions (more precisely, their presence does not change
gauge-invariant expectation values). However, as we shall
see below, they play a role, when they are added to the
action together with the mass term (5), as they make the
limit r → 0 well defined.
Relevance of the GSB perturbations.—To characterize

the strength of the perturbation PM, we compute the
corresponding RG dimension yr > 0. This exponent pro-
vides information on how to scale r to keep GSB effects
small. Indeed, when the correlation length ξ increases,
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approaching the continuum limit, one should decrease r
faster than ξ−yr to ensure that GSB effects are negligible.
We estimate yr by finite-size scaling (FSS) analyses of
Monte Carlo (MC) data. We consider the correlation
function hTrQxQyi of the operator Qx defined in Eq. (4)
and the corresponding second-moment correlation
length ξ. We consider RG-invariant quantities R, such as
Rξ ¼ ξ=L and the Binder parameter U ¼ hμ22i=hμ2i2,
where μ2 ¼

P
x;y TrQxQy. At continuous transitions driven

by the parameter J, they are expected to behave as [30]

RðL;J;g0Þ≈fRðXÞþOðL−ωÞ; X¼ðJ−JcÞL1=ν; ð7Þ

where ν is the length-scale critical exponent, and ω > 0 is
the exponent controlling the leading scaling corrections. It
is also useful to consider the FSS relation [38]

U ¼ FUðRξÞ þOðL−ωÞ; ð8Þ

where FU is a universal function independent of any
normalization. To estimate yr, we consider the behavior
of the RG-invariant quantities R in the presence of the GSB
term (5). In the large-L limit, we expect [39]

RðL; J; g0; rÞ ≈ FRðX; YÞ; Y ¼ rLyr ; ð9Þ

which holds provided [40] that yr > 1=ν, where ν is the
thermal exponent of the gauge model [along the CH
transition line, we have 1=ν ¼ 1.387ð6Þ, 1.247(12) for
N ¼ 15, 25, respectively]. Equation (9) is the usual FSS
relation for a multicritical point in systems with a global
symmetry. However, in the present case, its validity is not
obvious, given that the mass term PM is not well defined in
the (r ¼ 0) gauge-invariant noncompact theory: averages
of the mass term can only be computed in the presence of a
maximal gauge fixing [37,41], such as the axial (using C�
conditions) or Lorentz ones. For these reasons, we consider
three different actions with GSB terms

M1∶ S1 ¼ SAH þ PM; ð10Þ

M2∶ S2 ¼ SAH þ PL þ PM; ð11Þ

M3∶ S3 ¼ SAH þ PM with Ax;3 ¼ 0; ð12Þ

where M2 can be associated with the Lorentz gauge, and
M3 is defined imposing the axial gauge. We expect Eq. (9)
to be well defined in modelsM2 andM3, while its validity
in model M1 is instead not clear.
Numerical estimates of the RG dimensions.—We per-

formed MC simulations for N ¼ 15 and N ¼ 25 along the
CH transition line (estimates of the critical points and
exponents can be found in Ref. [25]) for the three models
M1 −M3; see the Supplemental Material [36] for details.
The results confirm that PM is relevant. Indeed, for fixed r,

there is a clear departure from the gauge-invariant (r ¼ 0)
critical behavior. In Fig. 1 we show results for N ¼ 25 at
the critical point. The exponent yr is estimated by fitting the
data at Jc to Eq. (9), setting X ¼ 0. We obtain yr ¼ 1.4ð1Þ
for M2 [for both a ¼ 1 and a ¼ 10, cf. Eq. (6)] and
yr ¼ 2.55ð5Þ for M3. We also mention that if we apply
Eq. (9) to U computed in M1 without gauge fixing, we
obtain the effective estimate yr ≈ 1.4, see top of Fig. 1,
confirming the relevance of PM along the CH transition
line. Analogous results are obtained for N ¼ 15, in par-
ticular, yr ¼ 2.55ð10Þ forM3. The exponent yr turns out to
depend on the gauge fixing, indicating that the gauge fixing
influences the RG properties of the mass perturbation.
Apparently, gauge-dependent modes, which are controlled
by the gauge fixing term, are crucial in determining the
effects of the photon mass term. Note that yr is quite large,
therefore the corresponding GSB perturbation must
decrease rapidly with L—faster than L−yr—to keep GSB
effects under control.
Critical behaviors in the presence of finite GSB terms.—

We now address the behavior of the NCAH model in the
presence of a finite GSB term such as the photon mass.
Also for finite r we expect a transition at a finite value
JcðrÞ, with Jcðr ¼ 0Þ ¼ Jc, where Jc is the CH transition
point in the gauge-invariant model. Since the charged fixed
point is unstable with respect to PM, we expect the
transition to belong to a different universality class, which
should only depend on the global symmetry of the model.
Although the global symmetry group for r > 0 is UðNÞ, we
will now argue that continuous transitions at JcðrÞ are
characterized by a larger Oð2NÞ invariance group. We note
that, since gauge fields are not expected to be relevant for
r ≠ 0, one can use the standard Landau-Ginzburg-Wilson
(LGW) approach [27–30] to predict the critical behavior.
Since the gauge symmetry is broken, zx represents the
microscopic order-parameter field. Therefore, the LGW
basic field is an N-component complex vector ΨðxÞ. The
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FIG. 1. Data of U at the critical point Jc ≈ 0.295 515 of the
NCAH model for N ¼ 25 and g20 ¼ 2.5, as a function of
Y ¼ rLyr . Results for models M1 (without gauge fixing, top)
and M3 (axial gauge, bottom).
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Lagrangian is the sum of the kinetic term j∂μΨj2 and of the
most general UðNÞ-invariant quartic potential

LLGW ¼ ∂μΨ� · ∂μΨþ wΨ� ·Ψþ u
4
ðΨ� ·ΨÞ2: ð13Þ

It is easy to check that LLGW is actually Oð2NÞ invariant.
Indeed, there are no dimension 2 and 4 UðNÞ-invariant
operators that break the Oð2NÞ symmetry. The lowest-
dimension operators that are not Oð2NÞ symmetric have
dimension 6 close to four dimensions—for instance,
ðImΦ� · ∂μΦÞ2—and thus they are expected to be irrelevant
at the 3D Oð2NÞ FP. Therefore, the critical behavior of
generic vector systems with global UðNÞ invariance (with-
out gauge symmetries) is expected to belong to the Oð2NÞ
universality class, implying an effective enlargement of the
global symmetry of the critical modes (restricted only to the
critical region).
The above analysis can be extended to lattice AH

models with compact gauge fields (CAH), using the link
variables λx;μ ∈ Uð1Þ and the pure gauge action Sλ ¼
−g−20

P
x;μ≠ν Reλx;μλxþμ̂;νλ̄xþν̂;μλ̄x;ν in Eq. (2). Unlike

NCAH models, CAH models with N ≥ 2 present only
two phases, separated by a disorder-order transition line
where gauge correlations are not critical [31]. Since the
scalar fields turn out to be the only critical degrees of
freedom, the effective description of the transitions is
provided by the SUðNÞ-invariant LGW Φ4 theory with a
matrix gauge-invariant order parameter, corresponding to
Qab

x in Eq. (4) [31,42]. For N ¼ 2 this LGW theory has a
stable O(3) vector FP, thus predicting O(3) continuous
transitions [30] for any gauge coupling g0 > 0, including
g0 → ∞ [for g0 → 0, instead, the model becomes equiv-
alent to the O(4) vector model]. This has been also
confirmed numerically [31]. Gauge invariance can be
broken by adding PM ¼ −r

P
x;μ Reλx;μ, which plays the

role of a photon mass for λx;μ close to 1. When the gauge
symmetry is effectively broken (as discussed in Ref. [43],
this requires r to be sufficiently large), the critical behavior
should be described by the LGW theory (13), which
predicts that continuous transitions belong to the O(4)
vector universality class.
The RG predictions at fixed r are confirmed by numeri-

cal results for both NCAH and CAH models. In Fig. 2 we
plot U versus Rξ for the NCAH model with N ¼ 25 and
r ¼ 1. The data around the critical point JcðrÞ are expected
to converge to a universal curve, cf. Eq. (8), which can be
compared with the analogous curves of models that belong
to known universality classes. The data approach the
Oð2NÞ vector universal curve [obtained using an appro-
priate operator that corresponds toQab

x in the Oð2NÞmodel
[31]], confirming the LGW RG argument. For the CAH
model with N ¼ 2, we observe an asymptotic O(4) vector
behavior for r ¼ 1 and r ¼ 2.25, in agreement with the
general arguments [36].

Various classes of GSB perturbations.—On the basis of
the results presented in this Letter, we may distinguish
three classes of GSB perturbations. (i) First, there are GSB
perturbations that are relevant at the stable FP of the lattice
gauge-invariant theory. They drive the system out of
criticality and may give rise to a different critical behavior.
The photon mass term (5) plays this role along the CH line
in the NCAH model. (ii) A second class corresponds to
gauge fixings and GSB perturbations like those appearing
in Eq. (6). If they are the only GSB terms present in the
model, they are irrelevant: gauge-invariant observables are
unchanged. However, if they are present together with
some relevant GSB perturbation, they play a role: the RG
flow close to the charged FP depends both on the gauge
fixing and on the relevant perturbation. This may be due to
the fact that a gauge fixing is needed to make non-gauge-
invariant correlations well defined in the gauge-invariant
theory or to the role of gauge-dependent modes that are
sensitive to gauge fixings. (iii) There are GSB perturba-
tions associated with RG operators with negative RG
dimensions, whose effects are suppressed in the critical
(continuum) limit.
When the added GSB perturbations are relevant, the

lattice system may develop a different critical behavior or
continuum limit. This is the case of the NCAH model with
a photon mass term, which has a global UðNÞ invariance.
Quite interestingly, the transitions in this model belong to
the Oð2NÞ vector universality class, with an effective
enlargement of the global symmetry at the transition.
This symmetry enlargement is expected in any model in
which the GSB perturbation is relevant and it preserves the
global UðNÞ symmetry.
Cyclic RG flow.—It is worth noting that the above results

lead to a peculiar RG flow; see Fig. 3 for a sketch in the
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Rξ
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1.01
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L=64
O(50)

r=0

r=1

FIG. 2. Estimates of U versus Rξ for the model M1 with
N ¼ 25, g20 ¼ 2.5, r ¼ 1. We also report results for the gauge-
invariant model (r ¼ 0) and the O(50) vector model (full line,
obtained by large-L extrapolations of MC data for the appropriate
spin-2 correlations, see Ref. [31] and the Supplemental Material
[36]). The results for r ¼ 1 appear to converge toward the O(50)
universal curve, consistent with OðL−ωÞ corrections with ω ≈ 1,
supporting the RG prediction reported in the text.

PHYSICAL REVIEW LETTERS 127, 091601 (2021)

091601-4



coupling space ðJ; g0; rÞ. For g20 → 0, the gauge fields are
frozen, and the model is equivalent to the Oð2NÞ vector
model, whose critical behavior is controlled by the
corresponding Oð2NÞ FP. If the gauge interactions are
turned on, i.e., one sets g0 > 0 keeping r ¼ 0, the sys-
tems flows toward the charged FP of the AH field
theory, which is stable for any 0 < g20 ≲ 4. Finally, if a
photon mass is added, i.e., one sets r > 0, since the
charged FP is unstable under this perturbation, the RG
flow goes back to the Oð2NÞ FP, which is now stable,
independent of g0 and r. This RG behavior can be
hardly reconciled with an irreversibility of the RG flow,
analogous to that generally associated with the monotonic
properties implied by the c theorem of 2D critical systems
[44,45], see also Refs. [46–51] for similar proposals in 3D
systems [52].
Conclusions.—In conclusion, we have studied the effect

of GSB perturbations on the critical behavior—or, equiv-
alently, the continuum limit—of gauge-invariant theories.
The behavior at the charged FP turns out to be more
complicated than that observed when global symmetries are
broken. In particular, we observe apparent violations of
universality. For instance, the RG dimension of the same
GSB perturbation appears to depend on local gauge-fixing
conditions, a result that, we believe, should be further
investigated. Moreover, GSB perturbations give rise to
unexpected phenomena, like the cyclic RG flow sketched
in Fig. 3.
Several extensions are called for, to achieve a satis-

factory understanding of the problem and to identify its
universal features, such as the study of other lattice gauge
theories—in particular, it would be interesting to extend
the analysis to the non-Abelian gauge groups—and
of other classes of GSB perturbations, for example,
preserving residual discrete gauge subgroups (such
approximations may be useful for analog simulations).
It would also be important to rephrase and extend the
present results to quantum Hamiltonian systems [53]
(see Refs. [54,55] for recent works addressing issues
related to GSB effects and the approach to the continuum
limit).

Numerical simulations have been performed on the
CSN4 cluster of the Scientific Computing Center at
INFN-PISA.

[1] S. Weinberg, The Quantum Theory of Fields (Cambridge
University Press, Cambridge, England, 2005).

[2] J. Zinn-Justin, Quantum Field Theory and Critical
Phenomena, 4th ed. (Clarendon Press, Oxford, 2002).

[3] X.-G. Wen, Quantum Field Theory of Many-Body Systems:
From the Origin of Sound to an Origin of Light and
Electrons (Oxford University Press, New York, 2004).

[4] P. W. Anderson, Superconductivity: Higgs, Anderson and
all that, Nat. Phys. 11, 93 (2015).

[5] S. Gazit, F. F. Assaad, S. Sachdev, A. Vishwanath, and C.
Wang, Confinement transition of Z2 gauge theories coupled
to massless fermions: Emergent QCD3 and SO(5) sym-
metry, Proc. Natl. Acad. Sci. U.S.A. 115, E6987 (2018).

[6] S. Sachdev, Topological order, emergent gauge fields, and
Fermi surface reconstruction, Rep. Prog. Phys. 82, 014001
(2019).

[7] S. Sachdev, H. D. Scammell, M. S. Scheurer, and G.
Tarnopolsky, Gauge theory for the cuprates near optimal
doping, Phys. Rev. B 99, 054516 (2019).

[8] H. Goldman, R. Sohal, and E. Fradkin, Landau-Ginzburg
theories of non-Abelian quantum hall states from non-
Abelian bosonization, Phys. Rev. B 100, 115111 (2019).

[9] C. Wetterich, Gauge symmetry from decoupling, Nucl.
Phys. B915, 135 (2017).

[10] D. Foerster, H. B. Nielsen, and N. Ninomiya, Dynamical
stability of local gauge symmetry, Phys. Lett. 94B, 135
(1980).

[11] J. Iliopoulos, D. V. Nanopoulos, and T. N. Tomaras, Infrared
stability of anti-grandunification, Phys. Lett. 94B, 141
(1980).

[12] J. Polchinski, String Theory (Cambridge University Press,
Cambridge, England, 1998).

[13] E. Zohar, J. I. Cirac, and B. Reznik, Quantum simulations of
lattice gauge theories using ultracold atoms in optical
lattices, Rep. Prog. Phys. 79, 014401 (2016).

[14] M. C. Bañuls et al., Simulating lattice gauge theories with
quantum technologies, Eur. Phys. J. D 74, 165 (2020).

[15] E. A. Martinez et al., Real-time dynamics of lattice gauge
theories with a few-qubit quantum computer, Nature
(London) 534, 516 (2016).

[16] H. Bernien et al., Probing many-body dynamics on a 51-
atom quantum simulator, Nature (London) 551, 579 (2017).

[17] N. Klco, E. F. Dumitrescu, A. J. McCaskey, T. D. Morris, R.
C. Pooser, M. Sanz, E. Solano, P. Lougovski, and M J.
Savage, Quantum-classical computation of Schwinger
model dynamics using quantum computers, Phys. Rev. A
98, 032331 (2018).

[18] C. Schweizer, F. Grusdt, M. Berngruber, L. Barbiero, E.
Demler, N. Goldman, I. Bloch, and M. Aidelsburger,
Floquet approach to Z2 lattice gauge theories with ultracold
atoms in optical lattices, Nat. Phys. 15, 1168 (2019).

[19] F. Görg, K. Sandholzer, J. Minguzzi, R. Desbuquois, M.
Messer, and T. Esslinger, Realization of density-dependent
Peierls phases to engineer quantized gauge fields coupled to
ultracold matter, Nat. Phys. 15, 1161 (2019).

FIG. 3. Sketch of the cyclic RG flow of the NCAH model in the
space of the parameters J, g0, and r, showing an unusual loop
between the Oð2NÞ and the charged FP CðNÞ.

PHYSICAL REVIEW LETTERS 127, 091601 (2021)

091601-5

https://doi.org/10.1038/nphys3247
https://doi.org/10.1073/pnas.1806338115
https://doi.org/10.1088/1361-6633/aae110
https://doi.org/10.1088/1361-6633/aae110
https://doi.org/10.1103/PhysRevB.99.054516
https://doi.org/10.1103/PhysRevB.100.115111
https://doi.org/10.1016/j.nuclphysb.2016.12.008
https://doi.org/10.1016/j.nuclphysb.2016.12.008
https://doi.org/10.1016/0370-2693(80)90842-4
https://doi.org/10.1016/0370-2693(80)90842-4
https://doi.org/10.1016/0370-2693(80)90843-6
https://doi.org/10.1016/0370-2693(80)90843-6
https://doi.org/10.1088/0034-4885/79/1/014401
https://doi.org/10.1140/epjd/e2020-100571-8
https://doi.org/10.1038/nature18318
https://doi.org/10.1038/nature18318
https://doi.org/10.1038/nature24622
https://doi.org/10.1103/PhysRevA.98.032331
https://doi.org/10.1103/PhysRevA.98.032331
https://doi.org/10.1038/s41567-019-0649-7
https://doi.org/10.1038/s41567-019-0615-4


[20] A. Mil, T. V. Zache, A. Hegde, A. Xia, R. P. Bhatt, M. K.
Oberthaler, P. Hauke, J. Berges, and F. Jendrzejewski, A
scalable realization of local U(1) gauge invariance in cold
atomic mixtures, Science 367, 1128 (2020).

[21] E. Zohar and E. Reznik, Confinement and Lattice Quantum-
Electrodynamic Electric Flux Tubes Simulated with Ultra-
cold Atoms, Phys. Rev. Lett. 107, 275301 (2011).

[22] M. C. Bañuls and K. Cichy, Review on novel methods for
lattice gauge theories, Rep. Prog. Phys. 83, 024401 (2020).

[23] B. I. Halperin, T. C. Lubensky, and S. K. Ma, First-Order
Phase Transitions in Superconductors and Smectic-A Liquid
Crystals, Phys. Rev. Lett. 32, 292 (1974).

[24] M. Moshe and J. Zinn-Justin, Quantum field theory in the
large N limit: A review, Phys. Rep. 385, 69 (2003).

[25] C. Bonati, A. Pelissetto, and E. Vicari, Lattice Abelian-
Higgs model with noncompact gauge fields, Phys. Rev. B
103, 085104 (2021).

[26] B. Ihrig, N. Zerf, P. Marquard, I. F. Herbut, and M.M.
Scherer, Abelian Higgs model at four loops, fixed-point
collision and deconfined criticality, Phys. Rev. B 100,
134507 (2019).

[27] K. G. Wilson and J. Kogut, The renormalization group and
the ϵ expansion, Phys. Rep. 12, 75 (1974).

[28] M. E. Fisher, The renormalization group in the theory of
critical behavior, Rev. Mod. Phys. 47, 543 (1975).

[29] K. G. Wilson, The renormalization group and critical
phenomena, Rev. Mod. Phys. 55, 583 (1983).

[30] A. Pelissetto and E. Vicari, Critical phenomena and re-
normalization group theory, Phys. Rep. 368, 549 (2002).

[31] A.Pelissetto andE.Vicari,Multicomponent compactAbelian-
Higgs lattice models, Phys. Rev. E 100, 042134 (2019).

[32] If one considers the model with compact fields, a critical
behavior associated with the charged AH FP is only
observed with fields of higher charge q ≥ 2 [33].

[33] C. Bonati, A. Pelissetto, and E. Vicari, Higher-charge three-
dimensional compact lattice Abelian-Higgs models, Phys.
Rev. E 102, 062151 (2020).

[34] A. S. Kronfeld and U. J. Wiese, SU(N) gauge theories with
C periodic boundary conditions. 1. Topological structure,
Nucl. Phys. B357, 521 (1991).

[35] B. Lucini, A. Patella, A. Ramos, and N. Tantalo, Charged
hadrons in local finite-volume QEDþ QCD with C� boun-
dary conditions, J. High Energy Phys. 02 (2016) 076.

[36] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.127.091601 for further
details on the lattice models, such as their boundary
conditions, and the numerical analyses, whose results are
reported in this Letter.

[37] We consider gauge fixings defined by the condition
Gx½A� ¼ 0 for all sites x. We assume that Gx½A� is a local
linear combination of the fields Ax;μ and that the gauge
fixing is maximal (no gauge freedom is left after the
introduction of the gauge fixing). Using the usual Fadeev-
Popov procedure, we can replace the gauge fixing with a
term expð−aPx Gx½A�2Þ, without changing the expectation
values of gauge-invariant operators.

[38] C. Bonati, A. Pelissetto, and E. Vicari, Phase Diagram,
Symmetry Breaking, and Critical Behavior of Three-
Dimensional Lattice Multiflavor Scalar Chromodynamics,
Phys. Rev. Lett. 123, 232002 (2019); Three-dimensional

lattice multiflavor scalar chromodynamics: Interplay be-
tween global and gauge symmetries, Phys. Rev. D 101,
034505 (2020).

[39] M. E. Fisher, The renormalization group in the theory of
critical behavior, Rev. Mod. Phys. 46, 597 (1974); Erratum,
Rev. Mod. Phys. 47, 543 (1975); Scaling Axes and the Spin-
Flop Bicritical Phase Boundaries, Phys. Rev. Lett. 34, 1634
(1975).

[40] If yr < 1=ν, Eq. (9) still holds but one has to replace X
with the appropriate linear scaling field (see Ref. [39]),
X ¼ ðJ − ar − JcÞL1=ν. The constant a is fixed by the
requirement that JcðrÞ ¼ Jc þ arþOðr2Þ. Here JcðrÞ is
the transition value for the model at fixed r and Jc ¼ Jcð0Þ.
If yr < 1=ν, the behavior for J ¼ Jc is controlled by X ¼
−arL1=ν and thus, fits of R to functions of rLyr would give
yr ¼ 1=ν: no information on the relevance or irrelevance of
the perturbation would be obtained.

[41] M. Creutz, Quarks, Gluons and Lattices (Cambridge
University Press, Cambridge, England, 1985).

[42] A. Pelissetto and E. Vicari, Three-dimensional ferromag-
netic CPN−1 models, Phys. Rev. E 100, 022122 (2019).

[43] C. Bonati, A. Pelissetto, and E. Vicari, Lattice gauge
theories in the presence of a linear gauge-symmetry break-
ing, Phys. Rev. E 104, 014140 (2021).

[44] A. B. Zamolodchikov, Irreversibility of the flux of the
renormalization group in a 2D field theory, JETP Lett.
43, 730 (1986), http://jetpletters.ru/ps/1413/.

[45] J. Cardy, Scaling and Renormalization in Statistical Physics
(Cambridge University Press, Cambridge, England, 1996).

[46] S. S. Pufu, The F-theorem, and F-maximization, J. Phys. A
50, 443008 (2017).

[47] T. Grover, Entanglement Monotonicity and the Stability of
Gauge Theories in Three Spacetime Dimensions, Phys. Rev.
Lett. 112, 151601 (2014).

[48] H. Casini and M. Huerta, Renormalization group running of
the entanglement entropy of a circle, Phys. Rev. D 85,
125016 (2012).

[49] I. R. Klebanov, S. S. Pufu, S. Sachdev, and B. R. Safdi,
Entanglement entropy of 3-d conformal gauge theories with
many flavors, J. High Energy Phys. 05 (2012) 036.

[50] I. R. Klebanov, S. S. Pufu, and B. R. Safdi, F-theorem
without supersymmetry, J. High Energy Phys. 10 (2011)
038.

[51] R. C. Myers and A. Sinha, Holographic c-theorems in
arbitrary dimensions, J. High Energy Phys. 01 (2011) 125.

[52] It is worth mentioning that some mechanisms that allow
cyclic RG flows even in the presence of local monotonicity
have also been proposed; see, e.g., T. L. Curtright, X. Jin,
and C. K. Zachos, Renormalization Group Flows, Cycles,
and c-Theorem Folklore, Phys. Rev. Lett. 108, 131601
(2012).

[53] J. B. Kogut, An introduction to lattice gauge theory and spin
systems, Rev. Mod. Phys. 51, 659 (1979).

[54] M. Van Damme, J. C. Halimeh, and P. Hauke, Gauge-
symmetry violation quantum phase transition in lattice
gauge theories, arXiv:2010.07338.

[55] T. V. Zache, M. Van Damme, J. C. Halimeh, P. Hauke,
and D. Banerjee, Achieving the continuum limit of quan-
tum link lattice gauge theories on quantum devices, arXiv:
2104.00025.

PHYSICAL REVIEW LETTERS 127, 091601 (2021)

091601-6

https://doi.org/10.1126/science.aaz5312
https://doi.org/10.1103/PhysRevLett.107.275301
https://doi.org/10.1088/1361-6633/ab6311
https://doi.org/10.1103/PhysRevLett.32.292
https://doi.org/10.1016/S0370-1573(03)00263-1
https://doi.org/10.1103/PhysRevB.103.085104
https://doi.org/10.1103/PhysRevB.103.085104
https://doi.org/10.1103/PhysRevB.100.134507
https://doi.org/10.1103/PhysRevB.100.134507
https://doi.org/10.1016/0370-1573(74)90023-4
https://doi.org/10.1103/RevModPhys.47.543
https://doi.org/10.1103/RevModPhys.55.583
https://doi.org/10.1016/S0370-1573(02)00219-3
https://doi.org/10.1103/PhysRevE.100.042134
https://doi.org/10.1103/PhysRevE.102.062151
https://doi.org/10.1103/PhysRevE.102.062151
https://doi.org/10.1016/0550-3213(91)90479-H
https://doi.org/10.1007/JHEP02(2016)076
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.091601
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.091601
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.091601
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.091601
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.091601
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.091601
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.091601
https://doi.org/10.1103/PhysRevLett.123.232002
https://doi.org/10.1103/PhysRevD.101.034505
https://doi.org/10.1103/PhysRevD.101.034505
https://doi.org/10.1103/RevModPhys.46.597
https://doi.org/10.1103/RevModPhys.47.543
https://doi.org/10.1103/PhysRevLett.34.1634
https://doi.org/10.1103/PhysRevLett.34.1634
https://doi.org/10.1103/PhysRevE.100.022122
https://doi.org/10.1103/PhysRevE.104.014140
http://jetpletters.ru/ps/1413/
http://jetpletters.ru/ps/1413/
https://doi.org/10.1088/1751-8121/aa6765
https://doi.org/10.1088/1751-8121/aa6765
https://doi.org/10.1103/PhysRevLett.112.151601
https://doi.org/10.1103/PhysRevLett.112.151601
https://doi.org/10.1103/PhysRevD.85.125016
https://doi.org/10.1103/PhysRevD.85.125016
https://doi.org/10.1007/JHEP05(2012)036
https://doi.org/10.1007/JHEP10(2011)038
https://doi.org/10.1007/JHEP10(2011)038
https://doi.org/10.1007/JHEP01(2011)125
https://doi.org/10.1103/PhysRevLett.108.131601
https://doi.org/10.1103/PhysRevLett.108.131601
https://doi.org/10.1103/RevModPhys.51.659
https://arXiv.org/abs/2010.07338
https://arXiv.org/abs/2104.00025
https://arXiv.org/abs/2104.00025

