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Localization is one of the most fundamental interference phenomena caused by randomness, and its
universal aspects have been extensively explored from the perspective of one-parameter scaling mainly for
static properties. We numerically study dynamics of fermions on disordered one-dimensional potentials
exhibiting localization and find dynamical one-parameter scaling for surface roughness, which represents
particle-number fluctuations at a given length scale, and for entanglement entropy when the system is in
delocalized phases. This dynamical scaling corresponds to the Family-Vicsek scaling originally developed
in classical surface growth, and the associated scaling exponents depend on the type of disorder. Notably,
we find that partially localized states in the delocalized phase of the random-dimer model lead to
anomalous scaling, where destructive interference unique to quantum systems leads to exponents unknown
for classical systems and clean systems.
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Introduction.—The Anderson localization [1] is a unique
phenomenon arising from destructive interference in dis-
ordered systems. It has attracted a lot of attention in, e.g.,
solid-state physics, quantum optics, and classical mechan-
ics [2–5], and has been observed in various experimental
setups [6–22]. Study of the Anderson localization has
significantly been put forward in light of one-parameter
scaling [3,23,24], where physical quantities are scaled only
by a single parameter. The example includes scaling for
system-size dependence of conductance and for correlation
functions at localization transition points. Despite its
importance, such a one-parameter scaling has been mainly
focused on static properties. Meanwhile, disorder is known
to affect quantum dynamics, such as entanglement dynam-
ics [25–33] and transport properties [34–43]. It is thus
intriguing and fundamental to pursue dynamical one-
parameter scaling, which can lead to a hitherto unknown
classification of disordered quantum systems using their
nonequilibrium properties.
It was recently found that dynamical one-parameter

scaling, called Family-Vicsek (FV) scaling, appears in a
clean quantum bosonic system [44]. While FV scaling was
originally known in classical surface growth [45–47], we
[44] found the scaling in the quantum system by introducing
a “quantum surface-height operator,” which represents
particle-number fluctuations summed over a given length
scale [see Eq. (2)]. The standard deviation of this operator,
i.e., quantum surface roughness, is found to obey the
Edwards-Wilkinson (diffusive) and ballistic scalings.

Notably, the surface roughness is experimentally accessible
in cold atomic systems using microscopes.
In this Letter, employing the surface roughness in

quantum systems, we show numerical evidence that
dynamical one-parameter scaling exists in one-dimensional
)1 D) noninteracting fermions in a disordered potential. We
use the random model (RM), the random-dimer model
(RDM) [48], and the Aubry-André model (AAM) [49],
which exhibit Anderson localization. The phase diagram of
these models is schematically shown in Fig. 1(a) as a
function of disorder strengthW. Our numerical calculations
find that, in the delocalized phases of the RDM and the
AAM, the surface roughness obeys the FV scaling char-
acterized by three exponents α, β, and z, as schematically
shown in Fig. 1(b). Notably, we find anomalous exponents
ðα; β; γÞ ≃ ð0.352; 0.337; 1.00Þ in the RDM. We argue that
the anomalous scaling is caused by numerous localized
eigenstates in a delocalized phase, which are unique to
quantum disordered systems. Furthermore, we find that the
surface roughness is approximately proportional to the
square root of the von Neumann entanglement entropy
(EE), and our numerical calculation elucidates the FV-type
scaling of the EE. Our finding suggests that the surface
roughness can be an experimentally friendly measure for
the EE. The table in Fig. 1(c) summarizes our results.
Theoretical models.—We consider noninteracting N-

spinless fermions on a 1D lattice with a disordered
potential. Let us denote the annihilation and creation
operators on a site j by f̂j and f̂†jðj ¼ 1;…;MÞ, where
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M is the number of the lattice sites. Throughout this Letter,
M is taken to be even. Then the Hamiltonian is given by

Ĥ ¼ −J
XM
j¼1

ðf̂†jþ1f̂j þ f̂†j f̂jþ1Þ þ
XM
j¼1

Vjf̂
†
j f̂j; ð1Þ

with a hopping constant J > 0 and an on-site potential Vj.
We use three potentials corresponding to the RM, the

RDM, and the AAM. The RM consists of a random
potential with no spatial correlation, where Vj takes 0 or
Vð> 0Þ following the probability function PRMðVjÞ ¼
ð1=2ÞδðVjÞ þ ð1=2ÞδðVj − VÞ. The potential in the
RDM [48] has a spatial correlation such that the pro-
bability function is given by PRDMðV2j−1; V2jÞ ¼
ð1=2ÞδðV2jÞδðV2j−1Þ þ ð1=2ÞδðV2j − VÞδðV2j−1 − VÞ,
with j ¼ 1; 2;…;M=2 [50]. The AAM has a fixed quasi-
periodic structure given by Vj ¼ V cosð2πθjÞ with the

irrational number θ ¼ ð ffiffiffi
5

p
− 1Þ=2 [49,51,52]. We assume

the periodic boundary condition for the RM and the RDM,
and the open boundary condition for the AAM. In the RDM
and the RM, we take ensemble averages to calculate
physical quantities, and the sample number in all the
calculations is b44000=Mc with the floor function (b� � �c).
The strength of the disorder is characterized by the

dimensionless constant W ¼ V=ð2JÞ. The models have
localized or delocalized phases depending onW [48,51], as

shown in Fig. 1(a). In the RM, all the eigenstates are
localized in the thermodynamic limit ifW is nonzero. If the
randomness has spatial correlation as for the RDM and the
AAM, there exist delocalized phases forW < 1. The RDM
has both delocalized eigenstates (DLESs) and localized
eigenstates (LESs) in the delocalized phase, but there are no
mobility edges [see Sec. I of the Supplemental Material
(SM) [53] ].
Surface-height operator and the roughness.—To explore

dynamical one-parameter scaling, we consider the “quan-
tum surface roughness” defined in Ref. [44]. The essential
ingredient is the mathematical analogy between surface
growth and one-dimensional nonlinear fluctuating hydro-
dynamics [59–62]. The former discusses the dynamics of
the surface height hðx; tÞ that obeys a stochastic partial
differential equation, such as the Kardar-Parisi-Zhang
(KPZ) equation. For the latter, recent works [59–61] found
that the spatiotemporal correlation function for the sound
mode ϕðx; tÞ shows dynamical scaling similar to that for
∂xhðx; tÞ in the KPZ equation [59–61]. Similarly, Ref. [62]
showed that, in the wave number and frequency spaces, the
correlation function for the local particle number ρðx; tÞ in a
discrete nonlinear Schrödinger equation obeys the KPZ
scaling. Then one can see the correspondence between
∂xhðx; tÞ and the fluctuation of ρðx; tÞ. Extending this
analogy to quantum systems, we introduce the following
surface-height operator [44,63]:

ĥj ¼
Xj

i¼1

ðf̂†i f̂i − νÞ; ð2Þ

with a filling factor ν ¼ N=M. The operator represents the
particle-number fluctuations summed over the subregion
½1; j� and can describe the particle-number fluctuations at a
given length scale j. The average surface height is given by
havðtÞ ¼ 1=M

P
M
j¼1 Tr½ρ̂ðtÞĥj�, where the density matrix

ρ̂ðtÞ is averaged over many realizations of the random
potentials for the RM and the RDM. The following surface
roughness wðM; tÞ is defined as the standard deviations
of ĥj:

wðM; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M

XM
j¼1

Trfρ̂ðtÞ½ĥj − havðtÞ�2g
vuut : ð3Þ

As discussed later, the surface roughness is well approxi-
mated by the particle-number fluctuations in the half of the
system. This implies that the surface roughness measures
the correlation between systems divided by two.
Our previous work [44] has found that the surface

roughness in isolated quantum systems free from disorder
exhibits the following FV scaling:

wðM; tÞ ¼ s−αwðsM; sztÞ ∝
�
tβ ðt ≪ tsatÞ;
Mα ðtsat ≪ tÞ; ð4Þ
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FIG. 1. (a) Phase diagram for the random-dimer model (RDM),
the Aubry-André model (AAM), and the random model (RM) as
a function of the disorder strength W. Delocalized phases appear
for W < 1 in the RDM and the AAM. (b) Schematic for surface-
roughness growth in the localized and delocalized phases. In the
delocalized phase, the growth is characterized by three power
exponents α, β, and z, which, respectively, capture system-sizeM
dependence of the saturated surface roughness, power-law
growth, and a saturation time tsat of the surface roughness. This
dynamical scaling is called Family-Vicsek (FV) scaling [see
Eq. (4)]. FV scaling does not emerge in the localized phase.
(c) Summary of our results, including numbers of delocalized
eigenstates (DLESs) and localized eigenstates (LESs) and growth
laws of von Neumann entanglement entropy SEE.
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with a parameter s and a saturation time tsat. Taking
s ¼ 1=M, we obtain wðM; tÞ ¼ Mαfðt=MzÞ with a scaling
function fðxÞ ¼ wð1; xÞ. This means that the surface
roughness with a different M collapses to a single curve
after normalization of the ordinate and the abscissa by Mα

and Mz. This dynamical one-parameter scaling was origi-
nally discussed in classical systems, and the exponents α, β,
and z classify the universality of the surface-roughness
dynamics [47]. The dynamical exponent z satisfies the
scaling relation z ¼ α=β, and z ¼ 1, 3=2, and 2 indicate
ballistic, superdiffusive, and diffusive transport. The
famous classes are the Edwards-Wilkinson class [64]
and the KPZ class [65], for which the scaling exponents
are ðα; β; zÞ ¼ ð1=2; 1=4; 2Þ and ð1=2; 1=3; 3=2Þ, respec-
tively. Our previous Letter [44] found that free fermions
(hard-core bosons) without disorders have ðα; β; zÞ≃
ð1=2; 1=2; 1Þ.
Surface-roughness dynamics.—We numerically investi-

gate the surface roughness to explore the FV scaling in the
disordered models. Our numerical method is based on
Gaussian states [66] (see also Sec. II of the SM [53]). The
initial state is a staggered state jψð0Þi ¼ Q

N
j¼1 f̂

†
2jj0i with

the total particle number N ¼ M=2. This initial state has
small surface roughness, and thus is suitable to investigate
the universal aspect of the surface-roughness growth.
Figures 2(a)–2(c) show the time evolution of the surface

roughness. In the delocalized phase (W ¼ 0.5) of the RDM
and the AAM, the surface roughness increases in time and
exhibits the FV scaling (4), as shown in Figs. 2(a) and 2(b),
respectively. The estimated power exponents ðα; β; zÞ in
the RDM and the AAM are (0.352,0.334,1.01) and
(0.487,0.458,1.02), respectively [67]. These results clearly

demonstrate that the dynamical one-parameter scaling
indeed exists, even in the disordered fermion models.
Notably, the exponents in the RDM are anomalous in that
they are absent in classical systems and clean systems. This
fact is attributed to the LESs in the delocalized phase, as
discussed later. On the other hand, in the localized phase,
the surface roughness is independent of the system size M
and does not exhibit clear power-law growth for all the
models, indicating the absence of FV scaling [see
Fig. 2(c)].
We systematically investigate disorder dependence of the

exponents ðα; β; zÞ by changing W in the delocalized
phases. As shown in Figs. 2(d)–2(f), we find that the
exponents in the RDM and the AAM are almost indepen-
dent of W. Thus, we conclude that the RDM and the AAM
in the delocalized phase show FV scaling with the expo-
nents ðα;β;zÞ≃ð0.352;0.337;1.00Þ and (0.492,0.457,1.02),
respectively, which are obtained by averaging the expo-
nents in Figs. 2(d)–2(f) over W. Also, we numerically
investigate the dynamics starting with other initial states
and find that the choice of the initial state is not important
as long as the initial states have small roughness (see
Sec. IV of the SM [53]).
Note that we show the numerical results only for

W ≥ 0.3. This is due to the larger localization length for
smaller W, which makes it difficult to eliminate the finite-
size effect. While we do not have conclusive results for the
exponents for small W, we conjecture that the exponents
are universal for 0 < W < 1, in accordance with the phase
diagram in Fig. 1.
The exponents in the AAM are close to ðα; β; zÞ ≃

ð0.500; 0.489; 1.00Þ for the noninteracting fermion model

(a)

(d) (e) (f)

(b) (c)

FIG. 2. Surface-roughness dynamics and FV scaling for delocalized phases of (a) RDM (W ¼ 0.5) and (b) AAM (W ¼ 0.5), and for
(c) localized phases of RM, RDM, and AAM (W ¼ 1.1). The time is normalized by τ ¼ ℏ=J. In (a) and (b), the main panels show
wðM; tÞ with M ¼ 200, 300, 500, 800, and 1200 with the ordinate and the abscissa normalized by ðM=200Þα and ðM=200Þz, and the
insets show the corresponding raw data. The delocalized phase shown in (a) and (b) exhibits clear FV scaling, whereas we find no
signature of FV scaling in the localized phase in (c). (d)–(f) Dependence of α, β, and z onW, respectively, for the AAM and the RDM in
the delocalized phases (W < 1). The numerical data used for extracting these power exponents are shown in Sec. III of the SM [53].
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without disorder [44]. This coincidence can be understood
by considering the numbers of DLESs and LESs for the
single-particle eigenstate of Ĥ. According to Sec. I of the
SM [53], the numbers of DLESs and LESs in the AAM
withW < 1 are proportional toM andOðM0Þ, respectively.
Thus, we conjecture that the effect of the remaining LESs is
too weak and that the exponents are almost the same as
those for fermion systems without disorder.
The situation drastically changes in the RDM with the

anomalous exponent α ≃ 0.352. According to Ref. [48] (see
also Sec. I of the SM [53]), the numbers of DLESs and
LESs in the RDM with W < 1 are proportional to

ffiffiffiffiffi
M

p
and

M, respectively. In stark contrast to the AAM, the RDM
supports many LESs even in the delocalized phase, and
they can strongly affect the surface-roughness dynamics.
Indeed, just from the information about the eigenstates and
the initial state, we can numerically reproduce the exponent
α ≃ 0.33 and 0.5 for the RDM and the AAM, respectively,
as shown in Fig. 3. In this calculation, we evaluate the
saturated surface roughness wavðMÞ using the appro-
ximated diagonal ensemble [68–71] (see Sec. V of the
SM [53]). Since we use the same initial states for the RDM
and the AAM, the result in Fig. 3 implies that the difference
in α originates with the statistical property of the eigen-
states. Furthermore, we can analytically derive the non-
anomalous exponent α ¼ 0.5 for systems without LESs,
i.e., disorder-free noninteracting systems (see Sec. Vof the
SM [53]) and systems satisfying the eigenstate thermali-
zation hypothesis [68]. All our findings support our argu-
ment that the anomalous scaling in the RDM is attributed to
the limited number of DLESs and the large number
of LESs.
Entanglement entropy and surface roughness.—We find

that the surface roughness is related to von Neumann EE
through a nontrivial relation. The EE quantifies quantum
entanglement in a pure state in a system divided into two
subsystems. Here, we divide the M-site system into sub-
systems A¼fjj1≤j≤M=2g and B ¼ fjjM=2 < j ≤ Mg
and define the reduced density matrix ρ̂reðtÞ ¼ trB½ρ̂pureðtÞ�,
where ρ̂pureðtÞ is a density matrix for a single realization of
the disordered models. Then the EE is calculated by
SEEðM; tÞ ¼ −TrA½ρ̂reðtÞ log ρ̂reðtÞ�, where the overline
denotes the ensemble average in the RDM.

To derive the relation between SEEðM; tÞ and wðM; tÞ,
we assume that (i) havðtÞ≃0, (ii) wðM; tÞ2 ≃ Trfρ̂ðtÞ½ĥM=2−
havðtÞ�2g, and (iii)

PM=2
j¼1 Tr½ρ̂ðtÞn̂j� ≃ νM=2. The validity

of these assumptions is numerically confirmed in Sec. VI of
the SM [53]. Assumptions (i) and (ii) lead to

wðM; tÞ2 ≃ Tr

�
ρ̂ðtÞ

�XM=2

j¼1

f̂†j f̂j −
Mν

2

�2�
: ð5Þ

Equation (5) indicates that wðM; tÞ2 can be approximated
by the particle-number fluctuation in the half of the system
from the averaged number νM=2. Thus, both wðM; tÞ2 and
SEEðM; tÞ have information about the correlation between
the divided systems A and B. We then find the following
relation (see Sec. VI of the SM [53]):

SEEðM; tÞ ≃ 3wðM; tÞ2; ð6Þ

where we use (iii) and the additional assumption that
eigenvalues of the correlation matrix Tr½ρ̂pureðtÞf̂†i f̂j�ði; j ∈
AÞ are uniformly distributed between zero and unity. Note
that Refs. [72,73] discuss relations similar to Eq. (6) for
ground states of free-fermion models, but not for dynamics.
Substituting Eq. (6) into Eq. (4), we obtain the following

FV-type scaling in the delocalized phases:

SEEðM; tÞ ¼ s−2αSEEðsM; sztÞ ∝
�
t2β ðt ≪ tsatÞ;
M2α ðtsat ≪ tÞ: ð7Þ

Figure 4 shows time evolutions of SEEðM; tÞ in the RDM
and the AAM with W ¼ 0.5. Our numerical results clearly
reveal that the EE obeys the FV-type scaling (7). The insets
of Fig. 4 verify Eq. (6), showing that the relation works
quite well, especially in the early stages of the dynamics.
Although they deviate from one another in the late stages,
the FV-type scaling still holds with the expected expo-
nent ð2α; 2β; zÞ.
This finding suggests that the surface roughness may

become a possible measure for entanglement and its
universal scaling. Furthermore, we rigorously prove in
Sec. VI of the SM [53] that if the bipartite number
fluctuation Tr½ρ̂ðtÞĥ2M=2� [74–76] with assumption
(iii) exhibits power-law growth tβ, SEEðM; tÞ also grows
as t2β in the thermodynamic limit (and vice versa).
Finally, we comment on the entanglement dynamics

studied in view of the surface roughness. Using quantum
circuit models, Nahum and co-workers [77,78] showed that
the EE obeys the KPZ equation. This means that the EE
itself behaves as the surface height, which differs from our
result in Eq. (6). The difference may be attributed to the
models used in the previous and our works because they
have different conserved quantities, which can lead to the
distinct longtime dynamics. We also stress that FV scaling
was not observed in Refs. [77,78] in that they did not
examine saturation of the fluctuations of the EE.

FIG. 3. Saturated surface roughness wavðMÞ obtained by the
approximated diagonal ensemble for the AAM and the RDM
with W ¼ 0.5.
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Conclusion and outlook.—We have numerically found
the dynamical one-parameter scaling of surface roughness
and entanglement entropy in disordered fermion models,
including anomalous scaling arising from partial quantum
localization [79]. Our study opens an unexplored avenue
for pursuing the unexpected relation between Anderson
localization and surface growth physics through the FV
scaling and the EE. From this viewpoint, it is interesting to
investigate the universality class of the FV scaling for
many-body localization [29–31,39–43,80–85] and the
Anderson localization with long-range interactions.
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