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Encoding classical data into quantum states is considered a quantum feature map to map classical data
into a quantum Hilbert space. This feature map provides opportunities to incorporate quantum advantages
into machine learning algorithms to be performed on near-term intermediate-scale quantum computers. The
crucial idea is using the quantum Hilbert space as a quantum-enhanced feature space in machine learning
models. Although the quantum feature map has demonstrated its capability when combined with linear
classification models in some specific applications, its expressive power from the theoretical perspective
remains unknown. We prove that the machine learning models induced from the quantum-enhanced feature
space are universal approximators of continuous functions under typical quantum feature maps. We also
study the capability of quantum feature maps in the classification of disjoint regions. Our work enables an
important theoretical analysis to ensure that machine learning algorithms based on quantum feature maps
can handle a broad class of machine learning tasks. In light of this, one can design a quantum machine
learning model with more powerful expressivity.
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The rapidly increasing volume and complexity of data
have led to the notable progress of machine learning (ML)
techniques to build sophisticated models to find patterns in
data. The main interest lies in the ability to recognize the
patterns these techniques can produce. If a physical
computation model can produce atypical patterns that
cannot be generated by a classical computer, it may reveal
patterns that are difficult to recognize in the classical
regime [1]. This expectation has led to the advent of
quantum machine learning (QML): a field that takes
advantage of quantum effects to surpass the classical
ML techniques. QML is currently benefiting from the
arrival of noisy intermediate-scale quantum devices that
may include a few tens to hundreds of qubits with no error
correction capability [2,3]. Such devices have ushered in
the era of hybrid quantum-classical algorithms [4–9].
Because a quantum computer can efficiently access and

manipulate quantum states, the quantum Hilbert space can
be used as a quantum-enhanced feature space for classical
data. The motivation is that quantum systems can explore a
larger class of features than can classical systems. The input
data are encoded in a quantum state via a quantum feature
map: a nonlinear feature map that maps data to the quantum
Hilbert space (Fig. 1). The quantum feature map is first
proposed and implemented as a fixed quantum circuit,
followed by a variational circuit that adapts the measure-
ment basis with trainable parameters [8,9]. Such QML
models can be rephrased as quantum kernel methods
induced from feature maps [10–14]. Quantum feature maps

underscore the QML advantage; there may be a provable
exponential speedup due to the classical intractability of
generating correlations for a particular learning problem.
For example, under the widely known hardness assumption
of the discrete logarithm problem, the first probable
exponential QML advantage was demonstrated via the
estimation of a support vector machine kernel matrix on a
fault-tolerant quantum computer [15]. Furthermore, one
can construct engineered datasets to demonstrate the most
significant separation between quantum and classical mod-
els from a learning-theoretic sense to yield the quantum

FIG. 1. Quantum feature framework consisting of a feature map
circuit UΨðxÞ realizing ΨðxÞ to map classical data x ∈ X to a
quantum state in Hilbert space and quantum circuit W to adapt
measurement basis. Combination of UΨðxÞ andW can be repeated
as a sequence with different parameters. This framework has the
universal approximation property if the linear combining of
measurement results can approximate any continuous function
g∶X → R.
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advantage in ML problems [16]. Still, little is known about
the relation between the classical intractability of quantum
feature maps and the generalization learning performance.
An interesting research question is whether a QML

model based on a quantum feature map can obtain
expressivity that is as powerful as, or is more powerful
than, classical ML schemes. The answer can determine
whether QML models can handle a broad class of ML tasks
in general. This can be investigated from the perspective of
the universal approximation property (UAP) and the
classification capability, which have been extensively
explored in feedforward classical neural networks
[17–19]. Here, the UAP refers to the ability to approximate
any continuous function [20,21]. The classification capabil-
ity implies that the function constructed from quantum
feature maps can form disjoint decision regions [22].
Quantum neural networks, which employ qubits as quan-
tum perceptrons with nonlinear excitation responses [23],
can be emulated on a photonic quantum computer to obtain
the UAP [24]. It is conjectured that under a special kind of
classical data preprocessing, sequentially repeated quantum
feature maps can become universal function approximators
[25]. In Ref. [26], the expressivity of a quantum model with
a variational circuit is characterized in terms of a partial
Fourier series in the data. However, the study of the UAP
and classification capability of QML models with quantum
feature maps still remains challenging.
In this Letter, we formulate the universal approximation

problem of QMLmodels in terms of quantum feature maps.
We present a provable UAP and classification capability in
two typical scenarios when setting the quantum feature
map. In the first scenario, which is defined as the parallel
scenario, the quantum feature map is a tensor product of
multiple quantum circuits; each circuit acts on a subsystem,
and the number of qubits can be set freely. In the second
scenario, which is defined as the sequential scenario, the
quantum feature map is the repetition of a simple fixed
quantum circuit, and the number of qubits is fixed. We
obtain the UAP in the first scenario and prove the UAP for
the second in single-qubit circuits of the finite input space.
Both scenarios have been mentioned in prior proposals via
short circuit sequences in realistic near-term settings
[8,26,27]. We therefore focus on the extent to which these
abstract setups can influence the approximating power of
QML models in future implementations with wider and
deeper quantum circuits.
Quantum feature maps.—We will now define the quan-

tum feature map mentioned in Refs. [8,9]. Let H be a
Hilbert space and X ⊂ Rd be an input set. The quantum
feature map Ψ∶X → H is a procedure of input encoding
that encodes some input x ∈ X into a quantum feature state
jΨðxÞi ∈ H. This mapping action is equivalent to applying
the quantum circuit VðxÞ ¼ UΨðxÞ to the initial state j0i⊗N ,
where N is the number of qubits. A quantum classifier can
be constructed from the quantum feature map using two

approaches: the variational circuit approach, and the kernel-
induced approach. In the variational circuit approach, a
short-depth quantum circuit W is applied to the quantum
feature state to adapt the measurement basis [8,9] (Fig. 1).
The parameters of circuit W are optimized during the
training, and the quantum measurement is performed to
obtain a complex nonlinear output. This output can be
represented as a linear combination of exponentially many
nonlinear functions. In the kernel-induced approach, the
quantum computer estimates the inner product between
quantum feature states, giving rise to a kernel

κðx; x0Þ ¼ hΨðxÞjΨðx0Þi ¼ h0…0jV†ðxÞVðx0Þj0…0i

to feed into classical kernel methods [9].
Quantum feature framework.—We unify the two above

approaches into a quantum feature framework, combining
quantum feature maps with an appropriate possible set of
observables. We introduce observables O1; O2;…; OK ,
which are Hermitian operators applied to the state
jΨðxÞi. If we measure Oi, we can obtain the expectation
value of this observable and consider it as the basis function
ψ iðxÞ∶X → R, which is defined as

ψ iðxÞ ¼ hΨðxÞjOijΨðxÞi ¼ Tr½OijΨðxÞihΨðxÞj�: ð1Þ

If these basis functions have nonlinearity properties with
sufficiently high dimension, we can solve a complex task
by the linear regression on the output function f∶X → R,
which is the linear combination of the basis functions ψ iðxÞ
with the weights wi ∈ R ði ¼ 1;…; KÞ [28]:

fðxÞ ¼
XK
i¼1

wiψ iðxÞ: ð2Þ

The observables fOig should be chosen for easy physical
implementation but can produce nonlinearity with suffi-
cient high-dimensional basis functions [29].
Universal approximation property and classification

capability.—A quantum feature framework F based on a
set of quantum feature maps and a set of observables on the
Hilbert space is defined as the collection of function
f∶X → R, where each f has the form in Eq. (2). We
define the UAP and classification capability of F . Let G be
a space of continuous functions g∶X → R. The framework
F has the UAP with respect to G and a norm k · k if given
any function g ∈ G; then, for any ε > 0, there exists f ∈ F
such that kf − gk < ε. This f is called an approximator of g
with ε error. Furthermore, F has the classification capabil-
ity if, for arbitrary disjoint regions (i.e., closed sets)
K1;K2;…;Km in X , there exists f ∈ F such that f can
separate these regions [17]. We investigate the UAP and the
classification capability in two typical scenarios in setting
the quantum feature map. We assume that X is a compact
set. For the sake of readability, we present some definitions
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for notations used in this study. A supremum norm of a
function h∶X → R is defined as khk∞ ¼ supx∈X jhðxÞj.
Let L2ðXÞ be a space of functions h∶X → R that is square
integrable; that is, Z

X
jhðxÞj2dx < ∞:

The norm of function h in L2ðXÞ space is defined as

khkL2ðXÞ ¼
�Z

X
jhðxÞj2dx

�
1=2

:

Parallel scenario.—We examine the first scenario where
the quantum feature map is a tensor product of multiple
quantum circuits acting on subsystems where the number
of qubits can be set freely [Fig. 2(a)]. We consider a typical
feature mapΨV

N represented by the following circuit applied
to j0i⊗N :

VNðxÞ ¼ V1ðxÞ ⊗ V2ðxÞ ⊗ … ⊗ VNðxÞ; ð3Þ

where VjðxÞ is a single-qubit Pauli rotation: for example, a
Y-basis rotation e−iθjðxÞY applied to the jth qubit with the
function θj∶X → R. Here,

I ¼
�
1 0

0 1

�
; X ¼

�
0 1

1 0

�
; Y ¼

�
0 −i
i 0

�
;

and

Z ¼
�
1 0

0 −1
�

are the Pauli matrices. We show that the UAP can be
obtained via the nonlinearity of the basis functions. This
nonlinearity can be introduced by an appropriate selection
of observables or by a classical preprocessing, such as
using a nonlinear pretransformation for the input.
To begin, we propose a popular setting of θjðxÞ and

observables to produce the nonlinearity in the quantum
feature framework. Because X is a compact subset of Rd,

without a loss of generality, we assume that X ¼ ½0; 1�d.
Given the input data x ¼ ðx1;…; xdÞ ∈ X and N ≥ d, we
consider the circuits in Eq. (3) with VjðxÞ ¼ e−i arccosð

ffiffiffiffi
xk

p ÞY ,
where 1 ≤ k ≤ d and k≡ jðmod dÞ, ð1 ≤ j ≤ NÞ. The
observables are Oα ¼ Zα1 ⊗ Zα2 ⊗ … ⊗ ZαN , where
α ¼ ðα1; α2…αNÞ ∈ f0; 1gN . The basis functions are cal-
culated as

ψαðxÞ ¼ h0j⊗NV†
NðxÞOαVNðxÞj0i⊗N: ð4Þ

From fψαg, we can construct any polynomial function on
X [31]. Due to a special case of the Stone–Weierstrass
theorem [36], any continuous function on X can be
approximated by polynomial functions with arbitrary
precision in terms of the supremum norm. Therefore, we
obtain the following UAP (see proof in the Supplemental
Material [31]).
Result 1 (UAP in the parallel scenario).—For any

continuous function, g∶X → R; then, for any ε > 0, there
exist N and a collection of output weights wα and
observables Oα ¼ Zα1 ⊗ Zα2 ⊗ … ⊗ ZαN , where α ¼
ðα1;α2;…; αNÞ ∈ f0; 1gN such that����X

α

wαψαðxÞ − gðxÞ
���� < ε

for all x in X . Here, the basis function ψαðxÞ is defined as
that in Eq. (4).
Result 1 implies that the induced quantum feature

framework has the UAP with respect to the supremum
norm. Furthermore, we prove the classification capability
of this framework. We consider m disjoint regions
K1;K2;…;Km in X and their corresponding m distinct
real values as labels c1; c2;…; cm. According to lemma 2.1
in Ref. [17], there exists a continuous function hc such that
hcðxÞ ¼ ci if x in Ki. We say that a function h∶X → R can
separate m disjoint regions K1;K2;…;Km at x0 if

jhcðx0Þ − hðx0Þj < δ ¼ 1

2
minfjci − cjj j∀ i ≠ jg:

From result 1, we can obtain a function f∶X → R in the
form X

α

wαψαðxÞ;

such that

jhcðx0Þ − fðx0Þj < δ ¼ 1

2
minfjci − cjj j∀ i ≠ jg

for all x0 in X . Therefore, f can separate K1;K2;…;Km.
We note that the number of observablesOα in the parallel

scenario does not need to scale exponentially with respect
to the number of qubits N. From the construction of the

(a)
(b)

FIG. 2. Quantum circuit UΨðxÞ for quantum feature map.
(a) Circuit is tensor product of multiple circuits, where each
circuit ViðxÞ acts on a subsystem. (b) Circuit is repetition of
simple circuit VðxÞ (for example, a single Pauli-Y rotation) acting
on the same qubits.
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circuits, for each k (1 ≤ k ≤ d), any combination of
αk; αkþd; αkþ2d;… with p nonzero elements gives the same
terms in the basis functions ψα. Hence, for each p, we only
need to choose one combination to construct the observable
Oα. Let qðkÞ denote the number of values that p can take
for each k. Then, the number of observables Oα does not
need to be larger than qð1Þqð2Þ…qðdÞ. Because the
number of elements in αk; αkþd; αkþ2d;… does not exceed
1þ bðN − 1Þ=dc, the value of p is taken in
0; 1;…; 1þ bðN − 1Þ=dc, where brc denotes the greatest
integer less than or equal to r. Therefore, qðkÞ ≤ 2þ bðN −
1Þ=dc for each k; thus, the number of observables does not
exceed ð2þ bðN − 1Þ=dcÞd.
Next, we show that the nonlinearity to establish the UAP

can be implemented by a special kind of data preprocessing
with an activation function incorporated into θjðxÞ. The
activation function can be computed by a classical algo-
rithm on the level of logical gates and then translated into a
reversible routine to be used as a quantum algorithm [37].
Given an activation function σ∶R → ½−1; 1�, we further
assume two conditions for σ. First, σ is nonconstant and
piecewise continuous. Here, σ is said to be piecewise
continuous if it has a finite number of discontinuities in any
interval, and its left and right limits are defined (not
necessarily equal) at each discontinuity. Second, σa;bðxÞ ¼
σða · xþ bÞ is dense in L2ðXÞ, where a · x denotes the
inner product of vectors a and x in Rd. This means that for
any ε > 0 and g ∈ L2ðXÞ, there exist a ∈ Rd and b ∈ R
such that kg − σa;bkL2ðXÞ < ε. We apply VNðxÞ in Eq. (3)
with

θjðxÞ ¼ arccos

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σaj;bjðxÞ

2

s !
;

where aj ∈ Rd and bj ∈ R are randomly generated from
any continuous sampling distribution for each j. In this
scheme, the number of observables can be reduced to N.
We consider the observables

Oj ¼ I ⊗ … ⊗ Z|{z}
j index

⊗ … ⊗ I

(1 ≤ j ≤ N) with the corresponding basis functions

ψ jðxÞ ¼ h0j⊗NV†
NðxÞOjVNðxÞj0i⊗N

¼ h0jeiθjYZe−iθjY j0i ¼ σaj;bjðxÞ: ð5Þ

Result 2 is obtained from the main result in the UAP of the
classical framework in Ref. [19] (theorem 2.3), which states
that for any ε > 0, there exist N and

fwjgNj¼1ðwj ∈ RÞ

such that

����XN
j¼1

wjσaj;bj − g

����
L2ðXÞ

< ε:

Result 2 (UAP when implementing activation functions
in preprocessing).—For any continuous function, g∶X →
R and the construction of basis functions ψ j is in Eq. (5);
then, for any ε > 0, there exist N and

fwjgNj¼1ðwj ∈ RÞ

such that

����XN
j¼1

wjψ j − g

����
L2ðXÞ

< ε:

Result 2 implies that with a sufficient number of qubits,
the framework induced from the nonlinear activation
function with the selected observables can work as a
universal approximator to any continuous function
g∶X → R in L2ðXÞ with any arbitrary precision. Similar
to the analysis from result 1, we consider the function hc to
investigate the classification capability in this setting. From
result 2, for ε > 0, there exists f∶X → R in the form of
Eq. (2) such that

khc − fkL2ðXÞ < ε:

Let Y ¼ fy ∈ X jjhcðyÞ − fðyÞj ≥ δg and VY be the volume
of Y; we then have V1=2

Y δ < ε or VY < ðε=δÞ2. Therefore,
by selecting sufficiently small ε, we can reduce VY as small
as possible to increase the classification capability.
Sequential scenario.—In the parallel scenario, it is

assumed that we can increase the number of qubits to
approximate the output function to a target continuous
function with arbitrary precision. However, there is a
limitation in the current realistic model with a large number
of qubits. We investigate whether the UAP can be obtained
by constructing the quantum feature map with only a single
qubit by repeating a simple quantum circuit VðxÞ
[Fig. 2(b)]. Unlike the parallel scenario, the quantum
feature map described in the following paragraph is not
capable of approximating a function whose domain is an
infinite set (see the Supplemental Material [31]). We restrict
the input set to a finite set X ¼ fx1; x2;…; xMg. For
example, in a real-world application, X can be the set of
RGB fixed-size images.
To obtain the UAP, it is important to set the appropriate

form of VðxÞ. In the Supplemental Material [31], we
present a counterexample of VðxÞ in which we cannot
obtain the UAP. Here, we consider the unitary operator
VðxÞ ¼ e−πiθðxÞY applied to the single qubit and establish
the condition of θðx1Þ; θðx2Þ;…; θðxMÞ to obtain the UAP.
The quantum feature map is constructed by repeating VðxÞ:
that is, applying VnðxÞ ¼ e−nπiθðxÞY (n ∈ N) to j0i, where
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θ∶X → R. The corresponding basis function with the
observable Z (Pauli-Z) becomes

ψnðxÞ ¼ h0jðVnÞ†ðxÞZVnðxÞj0i ¼ 2cos2ðπnθðxÞÞ − 1

¼ cosð2πnθðxÞÞ ¼ cosð2πfnθðxÞgÞ; ð6Þ

where fnθðxÞg ¼ nθðxÞ − bnθðxÞc is the fractional part of
nθðxÞ. The UAP is studied via the Kronecker–Weyl
theorem [38,39] on the density of the fractional parts
ðfnθðx1Þg;…; fnθðxMÞgÞn∈N. In the Supplemental
Material [31], we prove the following result, which states
that with the condition of the linear independence for
1; θðx1Þ;…; θðxMÞ, any function in X can be approximated
by repeatedly applying VðxÞ with an appropriate iteration
number n. Here, real numbers b1; b2;…; bL are linearly
independent over the set of rational numbers Q if the only
integral solution to z1b1 þ z2b2 þ � � � þ zLbL ¼ 0 is the all
zero z1 ¼ z2 ¼ … ¼ zL ¼ 0.
Result 3(UAP in the sequential scenario).—If X ¼

fx1; x2;…; xMg ⊂ Rd and 1; θðx1Þ;…; θðxMÞ are linearly
independent over Q, then for any function g∶X → R and
for any ε > 0, there exist n ∈ N and w ∈ R such that
jwψnðxÞ − gðxÞj < ε for all x in X . Here, the basis function
ψnðxÞ ¼ cosð2πfnθðxÞgÞ is defined as in Eq. (6).
Similar to the analysis from result 1, we can also obtain

the classification capability via result 3.
Approximation rate.—An interesting theoretical ques-

tion is how to describe relative goodness or badness in a
universal approximation. The approximation rate can be
used here, which is the decay rate of the approximation
error. This rate refers to the speed at which the approxi-
mation error decreases when the parameters, such as the
number of qubits N and the input dimension d, are
increased. The approximation rate strongly depends on
the nature of the target function g to be approximated and
the type of the input set X . In the Supplemental Material
[31], we prove the following result, which describes the
approximation rate in the parallel scenario.
Result 4 (approximation rate).—If X ¼ ½0; 1�d and the

target function g is Lipschitz continuous with respect to
the Euclidean norm, we can construct an explicit form of
the approximator to g in the parallel scenario by N qubits
with the error ε ¼ Oðd7=6N−1=3Þ. Furthermore, we can
achieve an approximation error with a better approximation
rate in terms of N as ε ¼ Oðd3=2N−1Þ.
The approximation error ε ¼ Oðd3=2N−1Þ can be

obtained by using the Jackson theorem of the quantitative
information on the degree of polynomial approximation to
a continuous function [40]. It implies that Oðd3=2ε−1Þ
qubits are enough to obtain an approximation with ε error.
However, the explicit form of this approximator remains for
future work.
The approximation rate provides a method to compare

the asymptotic universality between our quantum feature
framework and the classical neural networks. The number

of observables K in our framework corresponds with the
number of parameters in the classical neural networks.
Since K ¼ OðNdÞ in the parallel scenario, we can write our
best approximation error as ε ¼ OðK−1=dÞ if we fix d and
focus on K. Interestingly, this is also the best approxima-
tion when using a classical neural network to approximate a
Lipschitz continuous function [41,42]. This result suggests
a strong guarantee that the QML models in quantum-
enhanced feature spaces can exhibit at least the same
expressivity as the classical ML models.
Conclusion.—We present a comprehensive understand-

ing of the UAP of quantum feature frameworks induced
from quantum-enhanced feature spaces. This research lays
a foundation for further theoretical analysis of the expres-
sivity of these frameworks and provides insights into the
design of a good expressive model in QML applications.
Our proposal addresses the theoretical research question
about whether QML models in quantum-enhanced feature
spaces can solve the tasks that conventional MLmodels can
in classical settings. We obtain the results that under typical
quantum feature map settings, the QML models can
achieve both the UAP and classification capability, and
can thus handle a wide class of ML tasks. The suggestions
in practical applications are left for future works, such as
finding an efficient scheme with the lowest implementation
cost to obtain the necessary approximation accuracy.
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