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In this Letter, a water-in-oil swimming droplet’s transition from straight to curvilinear motion is
investigated experimentally and theoretically. An analysis of the experimental results and the model reveal
that the motion transition depends on the susceptibility of the droplet’s direction of movement to external
stimuli as a function of environmental parameters such as droplet size. The simplicity of the
present experimental system and the model suggests implications for a general class of transitions in
self-propelled swimmers.
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At the end of the 19th century, G. Quincke presented
self-propelled droplets as a model system for a migrating
cell in an aqueous environment [1,2]. He stated that the
fluid convection inside and outside of the swimming
droplet is similar to that observed in the protoplasmic
streaming of the amoeba cell. Today, scientists understand
that the droplet systems are not living cells themselves
because their chemical systems are significantly different.
However, physical and fluid-dynamical essentialities show
common characteristics with both systems, e.g., roll con-
vection, and their behaviors should be explored further with
the fluid dynamics of a self-propelled object [3–8], the
physics of collective motions [9,10], and the force balance
of adhesion and surface tension under nonequilibrium
conditions [11].
In recent decades, there has been an increased interest in

the spatiotemporal organization of self-propelled elements
called active matters, e.g., swarms of fish, birds, animals, and
microorganisms. It is expected that the recognition of the
physical phenomena that are unique to spontaneous and
collective motions can be applied to various fields involving
statistical physics, chemical technology, and life sciences
[9,12,13]. Swimming droplets have been reexamined as an
artificial active matter system with the special property of
their motility being controllable using chemical means [10].
The motion of droplets induced by the Marangoni effect and
wetting phenomena has been studied from the viewpoint
of fundamental sciences [14,15] and reaction control engi-
neering [16–18]. While the driving forces in these systems
have been actively studied, understanding motion controls
such as chemotactic motion [19] and spontaneous changes
in motility remains a challenging task. Additionally, swim-
ming droplets are still significant as models of the single
and collective motion of living organisms. For example,
various “living” motions are observed even in individual

droplets [10,20–24]. However, the emergence of motion
diversity is not clearly understood.
Several examples of the motilities of swimming droplets

have been reported. Liquid crystals enable us to extract a
specific mode of motion by controlling the symmetry inside
the droplets [25–28], where straight, curvilinear, and spiral
motions, and their transitions, have been demonstrated. As
a simpler case, spontaneous symmetry breaking of the
motion of a swimming droplet in a two-dimensional (2D)
system was investigated experimentally [29,30] and theo-
retically [31], which identified the straight-to-curvilinear
motion transition. Recent experimental studies reported
that an increase of the external surfactant concentration or
the viscosity of the swimming medium causes the curvi-
linear motion of a swimming spherical droplet [22,23]. In
addition, the previous studies showed the existence of a
relation between the emergence of the complex motion and
the onset of higher hydrodynamic modes [23,32]. However,
the exact connection is not yet explicitly confirmed.
In our study, we measured the motion and internal flow

of a spherical swimming water microdroplet and quanti-
tatively identified a straight-to-curvilinear motion transi-
tion. To reveal the relationship between the curvilinear
motion and the higher hydrodynamic modes, we developed
a 3D axis-asymmetric (torque-free) model consisting of the
advection-diffusion equation, with influx and outflux of
surfactants, coupled with the Stokes equation and inves-
tigated it analytically.
Experiments were conducted following the previous

study [21]. The individual droplets continued an active
swimming motion for more than 30 minutes. Water is
solubilized by reverse micelles in the oil phase [Fig. 1(a)].
The droplets are driven by the Marangoni effect, induced
by the inhomogeneity of the surface tension or surface
coverage of the surfactants, which correlates to the
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solubilization rate and the concentration of the swollen
reverse micelles nearby [21,33]. A schematic illustration
of the swimming mechanism is shown in Fig. 1(b). See A in
the Supplemental Material [34], which includes Ref. [35],
for details of the experimental setup. In Fig. 2(a),
typical trajectories of the centroids of the droplets are
represented for three different radii scales. Figure 2(b)
displays the trajectories of the centroids of the droplets
for 30≲ R≲ 400 μm.
The droplets tend to take more curved trajectories as their

radii increase. To confirm this observation quantitatively,
we calculated the angular autocorrelation function
hCðt; τÞit of the direction of movement of the droplets

with velocity vðtÞ, which is given as a function of lag
time τ: hCðt; τÞit ¼ < ½vðtþ τÞ · vðtÞ�=jvðtþ τÞjjvðtÞj >t,
where hit represents the time average, and a three-point
moving average was applied to the velocity [Fig. 3(a)]. The
fastest relaxation time attained ∼1.4 s [Fig. 3(b)], and thus
τmin ¼ 1.4 s was a suitable lag time to identify the degree of
curved motion as arccosCðt; τminÞ. Qualitatively similar
behavior has been observed in other experimental systems
[22,23]. The oscillatory motion of the large droplets is
possibly related to the chaotic motion shown in the
previous study [32]. To quantify the persistence of the
straight motion, we introduced the decay time of hCðt; τÞit
by fitting it with the angular autocorrelation function of the
Brownian harmonic oscillator hCðt; τÞit ¼ e−a1τþa2 cos a3τ
[36]. The decay time 1=a1 was plotted as a function of the
droplet radius, which indicated that the decay times tend to
change at approximately R ≈ 100 μm [Fig. 3(b)]. The
average speed increased with the radius and saturated at
R ≈ 100 μm [Fig. 3(c)].
The flow inside the droplets in the equatorial plane was

measured via particle imaging velocimetry (PIV). Besides
dipolar flow, quadrupolar flow was observed for some
droplets with R≳ 200 μmwhen they turned (shown in B of
the Supplemental Material). Furthermore, the PIV experi-
ment evaluated contributions of the flow modes [Fig. 4(b)]
and especially the difference angle between the axes of
dipolar and quadrupolar flow fields, which corresponds to
Ψ=2 as we see later in this analysis. The systematic
correlation between the difference angle Ψ and the turning
angle of the movement of the droplet [Fig. 4(a)] suggests
that the angle plays an essential role in the transition of the
motion.
To validate this hypothesis and explain the mechanism of

the transition, we developed a 3D axis-asymmetric theo-
retical model, based on a theoretical study of a swimming
droplet driven by the Marangoni flow in a 2D system [31].

Marangoni flow
Emitting water
with micelles

Oil + Surfactant

Water droplet

Water droplet

Oil + Surfactant

Surfactants

(b)(a)

FIG. 1. (a) Solubilization of water around a swimming droplet.
The water is dyed using Acid Red 52 (Tokyo Chemical Industry
Co., Ltd.). The red color gradient around the droplet shows
that the stained water inside the droplet was being emitted. The
black arrow represents the direction of the droplet’s movement.
The scale bar represents 200 μm. (b) Schematic illustration of the
swimming mechanism of a droplet. The droplet is driven by the
Marangoni flow (green arrows) generated by the solubilization of
water (blue arrows).

FIG. 2. Trajectories of the centroids of the swimming droplets
over 60 seconds (see videos 1–3 in the Supplemental Material).
(a) The typical trajectories of the droplet centroids. The radii of
the water droplets are 56 μm (left), 157 μm (middle), and 281 μm
(right). The scale bars represent 200 μm. (b) Trajectories of the
centroids of the droplets for three categories of droplet radii. The
starting points are set to the origin. The radii categories are 30 ≤
R < 100 μm (left), 100 ≤ R < 200 μm (middle), and 200 ≤ R <
400 μm (right). Color variation depicts different droplets.
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FIG. 3. Analysis of the experimental results. (a) Angular
autocorrelation function hCðt; τÞit of the direction of movement
of the droplets. The thin lines correspond to the individual
droplets, and the thick lines show the ensemble averages of
the droplets in the respective size categories. (b) Droplet radius
dependence of the decay time 1=a1. Each black dashed line
represents an exponential fitting line for the data points with
R < 100 μm and ≥ 100 μm. (c) Droplet radius dependence of the
time-averaged speed of the droplets (red dots). Error bars
represent the standard deviations of the speed. The blue line is
a fitting curve using Eq. (26) in H of the Supplemental Material
with R < 250 μm.
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The velocity of the droplets was assumed to lie in the
horizontal plane in agreement with the experimental
observations. In constructing the model, we considered
the flow on the surface of the droplets instead of the internal
flow, which is determined by the surfactant concentration
on the droplet surface [6].
The surfactant concentration cðθ;ϕÞ on the droplet

surface, parametrized by the polar angle θ and azimuthal
angle ϕ, is assumed to obey

∂c
∂t þu ·∇c¼ D

R2
Δspherec−αcþαβδ

�
θ−

π

2
;ϕ− arg

v
jvj

�
;

ð1Þ
where α and β are the characteristic duration of stay on the
surface and the relative rate of the supply of the surfactant,
u is the flow field on the droplet surface, D is the diffusion
coefficient of the surfactant on the surface, and

Δsphere ¼
1

sinθ
∂
∂θ ðsinθ

∂
∂θÞþ

1

sin2θ
∂2

∂ϕ2

is the Laplacian operator on the unit sphere. A detailed
discussion of the current model setup is provided in C of the
Supplemental Material, which includes Refs. [37–39].
We expand the surfactant concentration c and the flow

field u in terms of spherical harmonics Ym
l using the

solution of the Stokes equation in terms of the surface
tension distribution (given in D of the Supplemental
Material) [6]. The terms with lower-order spherical har-
monics are retained so that the flow field inside the droplet
is symmetrical in the horizontal plane, as the droplet
was not moving significantly in the vertical direction
and our focus here is the angle between the axes of dipolar
and quadrupolar flows. Thus, we expand c as where c−11 ¼
−ðc11Þ� and c−22 ¼ −ðc22Þ� are complex numbers, and c02 is a
real number. On the equatorial plane, the term with
ðl; mÞ ¼ ð1;�1Þ yields a dipolar flow, (2, 0) a radial flow,
and ð2;�2Þ a quadrupolar flow (streamlines are shown in E
of the Supplemental Material). We set the retained terms as
c11 ¼ ρeiν, c02 ¼ Z, and c22 ¼ μeiλ, where ρ > 0 and μ > 0.
The variables ρ and π − ν correspond to the strength
and the direction of the “dipolar flow,” respectively.
Further, ρ and ν determine the velocity of the droplet [6]
as follows:

v ¼ 1

3

ffiffiffi
6

π

r
γρ

2ηþ 3η̂

0
B@

− cos ν

sin ν

0

1
CA; ð2Þ

where η is the oil viscosity, η̂ is the water viscosity, and γ is
a factor of proportionality between surface tension and
concentration. Similarly, μ and π − λ=2 correspond to the
strength and the direction of the “quadrupolar flow.”
From Eq. (1) and the solution of the Stokes equations, we

obtain a system of ordinary differential equations gov-
erning the motion of the droplet (the derivation is described
in F of the Supplemental Material). Nondimensionalization
yields a system of equations:

dρ̄
dt̄

¼ −
3

10R̄

ffiffiffi
5

π

r
ð1þ χÞ½−

ffiffiffi
6

p
ρ̄ μ̄ cosðλ − 2νÞ þ ρ̄ Z̄�

−
�
1þ 2L2

R̄2

�
ρ̄þ 1

4

ffiffiffi
6

π

r
; ð3aÞ

dν
dt̄

¼ 3

10R̄

ffiffiffiffiffi
30

π

r
ð1þ χÞμ̄ sinðλ − 2νÞ; ð3bÞ

dZ̄
dt̄

¼ 1

35R̄

ffiffiffi
5

π

r
ð7ρ̄2 þ 15χZ̄2 − 30χμ̄2Þ −

�
1þ 6L2

R̄2

�
Z̄

−
1

4
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5

π

r
; ð3cÞ

FIG. 4. Results of PIV experiments. The flow modes were
extracted from PIV data of the internal flow and were calculated
into the concentration mode of the chemical. (a) 2D density map
between the difference angle Ψ ¼ λ − 2ν and the degree of
curved motion as arccosCðt; τminÞ. The color indicates the
density. (b) The average ratio of flow modes observed in the
PIV experiments, i.e., ðl; mÞ ¼ ð1;�1Þ: dipolar, (2, 0): radial,
ð2;�2Þ: quadrupolar, and the residual flow fields, given by the
norm of each vector field, and the droplet radius. Error bars
represent the standard deviations of the ratios. (c) Scatter diagram
between the speed of the droplet jvj and model suggested
parameter γρ estimated from the PIV results. The green dots
represent 30 < R < 200 μm and red dots represent 200 ≤ R <
400 μm. The model denotes the blue line as jvj ¼ 7.77×
106 × γρ μms−1. (d) Scatter diagram between angular velocity
arccosCðt; τminÞ=τmin and γμ sinΨ=R. The green and red dots
represent the same range as those of (c). The blue line is predicted
by the present model without free fitting parameters as
dν=dt ¼ 2.20 × 107 × ðγμ sinΨ=RÞ rad s−1.
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dμ̄
dt̄

¼ 1

40

ffiffiffiffiffi
30

π

r �
−
4ρ̄2

R̄
þ 5

�
cosðλ − 2νÞ − 6

7R̄

ffiffiffi
5

π

r
χZ̄ μ̄

−
�
1þ 6L2

R̄2

�
μ̄; ð3dÞ

dλ
dt̄

¼ −
1

40

ffiffiffiffiffi
30

π

r �
−
4ρ̄2

R̄
þ 5

�
sinðλ − 2νÞ

μ̄
; ð3eÞ

where the overlined symbols denote nondimensionalized
quantities. The parameter L ¼ ld=la is determined by
constants ld ¼

ffiffiffiffiffiffiffiffiffi
D=α

p
and la ¼ γβ=αð2ηþ 3η̂Þ, corre-

sponding to the characteristic lengths of diffusion and
advection, respectively. The parameter χ ¼ ð2ηþ 3η̂Þ=
ð5ηþ 5η̂Þ is calculated as 0.41 using the values of the
viscosity of squalene 28.33 × 10−3 kg=ðm · sÞ [40] and
water 0.89 × 10−3 kg=ðm · sÞ (0.1 MPa, 25 °C).
To quantitatively verify the consistency between the

model and the experimental results, we estimated the
surfactant concentration in the surface cml from the observed
flow field by fitting the PIV results of the internal flow with
the solution of the Stokes equation in terms of ρ, ν, Z, μ, and
λ. Details of the fitting method are in G of the Supplemental
Material. We reconstructed the vector fields using the
variables c11 ¼ ρeiν, c02 ¼ Z, and c22 ¼ μeiλ, and the residual
flow field was defined by the difference between the
reconstruction and the observation. The relative strength

of each term was estimated from the norm of each vector
field [Fig. 4(b)]. The residual was large when R≲ 50 μm,
possibly caused by the insufficient resolution of the image.
When R≳ 50 μm, as the droplet radius increased, the
quadrupolar terms (2,0) and ð2;�2Þ became dominant,
while the dipolar term ð1;�1Þ diminished. The residual
also increased due to higher-order terms.
Speeds of the droplets in the experiments are compared

with ones predicted by Eq. (2) using values of γρ estimated
from the PIV results [Fig. 4(c)]. The speed was observed to
be proportional to γρ for R < 200 μm (green dots),
distributed along the blue line representing the model with
the same viscosity values as above.
Angular velocities are also estimated from the dimen-

sional version of Eq. (3b). We obtain a relation

dν
dt

¼ 3

50

ffiffiffiffiffi
30

π

r
7ηþ 8η̂

ðηþ η̂Þð2ηþ 3η̂Þ
γμ sinΨ

R
;

where Ψ ¼ λ − 2ν. Figure 4(d) displays a scatter plot
between the angular velocity of the motion direction vector
of the droplet in adopting arccosCðt; τminÞ=τmin and
γμ sinΨ=R evaluated from the PIV experiments. The
distribution normalized by γμ sinΨ=R for R < 200 μm
(green dots) suggests a master curve, and that is represented
by the above equation without free fitting parameters (blue
line), i.e., the model is consistent with the PIV result.
To investigate the possible scenarios of the motion

transition, we conducted a linear stability analysis for

FIG. 5. Analysis of solutions of straight motion for the diffusion coefficient D ¼ 10−10 m2=s. (a) Values and stability of solutions of
Ψ ¼ 0: puller (a-1) and Ψ ¼ π: pusher (a-2). (b) Multiplier coefficient M of motion direction against stimulus versus droplet radius R.
(c) Time development of the direction of movement of the droplet from the initial direction when the external stimulus 1° is applied to the
direction of movement. For the stable solution of straight motion at radius R ¼ 18 μm (blue) and R ¼ 121 μm (magenta). (d) Schematic
illustrations of motions of droplets under stimuli in real space withM < 1 (d-1) and> 1 (d-2). (e) Schematic diagram of the internal flow
modes of the droplet.
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Eq. (3). Solutions of stable straight motion should satisfy
dν=dt̄ ¼ 0, i.e., sinΨ ¼ 0. This is further classified into
two cases Ψ ¼ 0 and Ψ ¼ π. Using the effective squirmer
parameter

3
ffiffiffi
3

p

20ρ̄
ð

ffiffiffi
6

p
μ̄ cosΨ − Z̄Þ;

we see that Ψ ¼ 0 and Ψ ¼ π correspond to puller and
pusher squirmer types, respectively, if Z̄ is small [6].
Examples of flow fields are shown in I of the
Supplemental Material. For Ψ ¼ 0 and Ψ ¼ π, we numeri-
cally calculated ρ̄, Z̄, μ̄ of Eq. (3) and the eigenvalues of the
coefficient matrices of the linearized systems. A result
consistent with the experiment is obtained using the value
D ¼ 10−10 m2=s. There are stable solutions with Ψ ¼ 0 for
R≲ 34 μm [Fig. 5(a-1)] and with Ψ ¼ π for R≳ 34 μm
[Fig. 5(a-2)]. Although both are stable, the growth of the
perturbation is different. The rate of increase of the
deviation from the solution is defined by Δν∞ ¼ MΔν0
with a stimulus Δν0 and the following response Δν∞.
The coefficient M is analytically calculated as M ¼
A2=ðA2 − 2A1Þ where dν=dt̄ ¼ A1 sinΨ and dλ=dt̄ ¼
A2 sinΨ are from Eqs. (3b) and (3e) (see K of the
Supplemental Material). Figure 5(b) shows the coefficient
M at a stable solution of straight motion as a function of the
droplet radius. If M < 1, an effect of an external stimulus
Δν0 is rapidly damped and a straight motion restarts. If
M > 1, the effect leaves an imprint on the direction of
movement for a longer time, and it gradually turns toward
∼MΔν0. Actually, a numerical simulation of Eq. (3)
confirms the significantly longer relaxation time in the
case of M > 1 than M < 1, and total deflection angles in
droplet movements are magnified by ∼M [Fig. 5(c)]. Time
developments of the respective motions under stimuli will
differ phenomenologically [Fig. 5(d)].
This responsiveness transition from M < 1 to M > 1

occurs around the radius R ≈ 34 μm as a result of the
change of swimming mode between puller and pusher
for the stable straight solution [Fig. 5(a)]. The size of the
droplet is one of essential parameters to elevate the
strengths of quadrupolar flow and concentration; therefore
the responsiveness changes due to the droplet size varia-
tion. Since deviation of Ψ from the solutions 0 and π
corresponds to left-right asymmetrical flow [Fig. 5(e)],
effective periods exhibiting the asymmetrical flow accom-
panied by turning motion are enlarged by the property
M > 1 [Fig. 5(d)]. Apart from external stimuli such as
thermal fluctuation, an internal perturbation is possibly
induced by the self-generated chemical ununiformity [23].
From the above discussion, we conclude that the observed
motion transition is precisely the transition of the angular
response to perturbations.
There are two fundamental transitions observed in self-

propelled objects: stationary to moving and straight
to curvilinear [22,23,29–31,33]. In particular, the latter

transition is essential to the motion diversity. We exper-
imentally and theoretically revealed that even an isotropic
swimming droplet, which has spherical symmetry, exhibits
a straight-to-curvilinear motion transition. Considering the
simplicity of the experimental system and the present
model, it is probable that similar orbital instability in
straight swimming movement exists in a phase separation
[15] and in a living cell such as an amoeboid swimmer [1–
3,41–43]. Further study in this line would be of interest, as
it may reveal a mechanism behind the rich variety of living
and active motions in nature.
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