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A theoretical treatment of deeply supercooled liquids is difficult because their properties emerge from
spatial inhomogeneities that are self-induced, transient, and nanoscopic. I use computer simulations to
analyze self-induced static and dynamic heterogeneity in equilibrium systems approaching the exper-
imental glass transition. I characterize the broad sample-to-sample fluctuations of salient dynamic and
thermodynamic properties in elementary mesoscopic systems. Findings regarding local lifetimes and
distributions of dynamic heterogeneity are in excellent agreement with recent single molecule studies.
Surprisingly broad thermodynamic fluctuations are also found, which correlate well with dynamic
fluctuations, thus providing a local test of the thermodynamic origin of slow dynamics.

DOI: 10.1103/PhysRevLett.127.088002

The physical properties of crystals follow from the
periodic repetition of a unit cell [1]. By contrast, amor-
phous solids are aperiodic structures displaying frozen
spatial inhomogeneities [2–4] which require special theo-
retical approaches [5–7]. Simple fluids are also structurally
disordered, but spatial fluctuations are weak enough that
physical properties can be accurately predicted without
explicitly dealing with disorder [8]. Deeply supercooled
liquids represent a conceptual challenge as they are
structurally disordered, with physical properties driven
by the existence of spatial heterogeneities, but these
fluctuations are transient, induced by the competition
between frustrated particle interactions and thermal fluc-
tuations, and of modest spatial extension [7].
The physics of bulk supercooled liquids has received

considerable attention [2–7]. It is established that dynamics
becomes spatially heterogeneous over a characteristic
length scale that grows modestly approaching the exper-
imental glass transition [9–11]. This mesoscopic dynamic
heterogeneity is illustrated in Fig. 1(a), obtained from
simulating a hard sphere model introduced shortly. The
microstructure of supercooled liquids is very complex and
fluctuates broadly at the particle scale [12]. Structural
heterogeneity reflects the large variety of amorphous
packings that particles can locally adopt. These multiple
disordered structures are the real-space signature of a
rugged free energy landscape, but this local disorder is
self-induced, as the original Hamiltonian does not contain
quenched random interactions.
Bulk physical properties in supercooled liquids emerge

as an ensemble average over locally distributed quantities
[10]. Ideally, one would like to understand the fluctuations
of local thermodynamic and structural properties to then
infer heterogeneous relaxation processes [13]. The disorder
strength also represents the microscopic mechanism by

which the ideal glass transition may disappear in finite
dimensions [14–16], but this was never measured directly.
The emblematic stretched exponential decay of time
correlations [17,18] reflects a distribution of local relaxa-
tion functions with fluctuating shapes and timescales
[9,10]. Recent single molecule [19–22] and electron
correlation microscopy [23] studies give direct access to
such distributions, but the experimental evidence of fluc-
tuating local distributions is contradicted by simulations
[24]. The structural origin of dynamic heterogeneity
remains a wide open question. Previous work discussed
either particle-based structural indicators [12,25–27] or
noncausal correlations between bulk structural and dynami-
cal quantities [28–32]. Statically, self-induced disorder is at
the core of the mean-field theory of glasses [6] and random
first order transition theory [33], and, ultimately, the reason
why configurational entropy is central to glass studies [34].
Some consequences of self-induced disorder on bulk
thermodynamics have been analyzed before in simulations
[35–37], but very little is known about the distribution of
these fluctuations in realistic models and their temperature
evolution. Most importantly, a link between local entropy
fluctuations and structural relaxation has never been
established, although this idea, proposedmore than 50 years
ago [38], has been analyzed in countless publications.
I numerically analyze self-induced heterogeneity by

studying dynamic and static properties of statistically
independent mesoscopic systems, attacking three different
lines of investigations. As pioneered by Heuer and co-
workers [39–41] and illustrated in Fig. 1(a), the study of
small systems grants access to fluctuations created by the
specific packing adopted locally in each configuration.
Also key to our study is the use of the swap Monte Carlo
algorithm [42] which provides fast equilibration down to
the experimental glass transition and allows to probe, for
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the first time, local fluctuations in the appropriate tempera-
ture regime. We first characterize the dynamics of elemen-
tary systems using isoconfigurational averaging [43] to
obtain smooth time correlations for each sample. We
measure both sample-to-sample fluctuations of the relax-
ation dynamics and the local lifetime of the dynamic
heterogeneity, which compare well with recent experiments
[20–23]. Second, we characterize sample-to-sample fluc-
tuations of the Franz-Parisi free energy [44], which is
directly related, in bulk systems, to the configurational
entropy [45]. Third, we show that thermodynamic and
dynamic fluctuations are correlated, which amounts to
validating a local version of the Adam-Gibbs relation.
We simulate three-dimensional nonadditive polydisperse

hard spheres with a flat distribution of particle diameters
and polydispersity around 23% (details as in Ref. [46]). To
probe elementary systems, we use the smallest possible
system size with periodic boundary conditions. Too small
systems have an incorrect pair correlation [39] and can be
structurally unstable [47]. We settle for N ¼ 111 particles
(a smaller system with N ¼ 71 too easily crystallized),
which is smaller than the extension of the dynamic
heterogeneity, see Fig. 1(a), but has an average behavior
comparable to larger systems. We perform constant pres-
sure Monte Carlo simulations at constant temperature (set

to T ¼ 1, for convenience in units where the Boltzmann
constant kB is also unity), and use the pressure P as control
parameter (constant density simulations would yield equiv-
alent results). This is also convenient as P [or, rather the
compressibility factor P=ðρkBTÞ, where ρ is the number
density] plays for hard spheres a role strictly equivalent to
1=T in systems with soft interactions [48]. For this system
[46], P ¼ 20 corresponds to the onset of slow dynamics,
P ¼ 26 to the mode-coupling crossover, and P ¼ 37 is a
conservative estimate of the experimental glass transition.
One Monte Carlo timestep represents N attempts to
perform a translational move. The unit length is the average
particle diameter, and the particle sizes are kept constant in
each sample.
We analyze sample-to-sample fluctuations of the struc-

tural relaxation up to P ¼ 30, much beyond the mode-
coupling crossover. We run 40 distinct trajectories starting
from each configuration α equilibrated using swap
Monte Carlo during which we record the time overlap
QαðtÞ ¼ 1=N

P
i θða − jrαi ðtÞ − rαi ð0ÞjÞ, with a ¼ 0.2,

rαi ðtÞ the position of particle i at time t starting from
configuration α at t ¼ 0, and θðxÞ the Heaviside function
(this choice ensures that the overlap probes equivalent
physics to the self-intermediate scattering function
[49,50]). By averaging over distinct trajectories from the

FIG. 1. (a) I highlight a subsystem comprising N ¼ 111 particles in a larger system of N ¼ 8000 hard spheres, whose spatially
heterogeneous dynamics is illustrated by distinguishing fast (red) and slow (blue) particles near τb at P ¼ 30. (b) Time decay of the
overlap QαðtÞ in 40 isoconfigurational trajectories, and the resulting average hQαðtÞi for a single configuration α with N ¼ 111 and
P ¼ 30. (c) Time decay of isoconfigurational average hQαðtÞi for 200 independent configurations with N ¼ 111 and P ¼ 30 and
resulting bulk average QbðtÞ. (d),(e),(f) Sample-to-sample fluctuations of the plateau height q, characteristic timescale τ, and stretching
exponent β for P ¼ 30. Bulk values are marked with vertical dashed lines.
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same initial condition α we obtain the isoconfigurational
average hQαðtÞi, see Fig. 1(b). Whereas QαðtÞ is not
smooth and fluctuates among individual trajectories,
hQαðtÞi has a smooth time dependence which fully char-
acterizes the relaxation dynamics of configuration α. The
isoconfigurational average advantageously replaces the
time average needed in single molecule studies. In a final
step, we perform an additional average over 200 indepen-
dent configurations to obtain the bulk correlation function,
QbðtÞ ¼ hQαðtÞi, see Fig. 1(c). To analyze the fluctuations,
each isoconfigurational correlation is fitted to a stretched
exponential,

hQαðtÞi ¼ q exp ½−ðt=τÞβ�; ð1Þ

where ðq; β; τÞ are three fitting parameters, taking values
ðqb; βb; τbÞ for the bulk function QbðtÞ.
In Figs. 1(d)–1(f) we show histograms of their sample-

to-sample fluctuations for P ¼ 30. The plateau height q has
surprisingly large fluctuations, of order 20%, with a
pronounced tail towards small values. The relaxation time
τ varies over about 3 orders of magnitude, with again a
significant tail corresponding to systems relaxing much
faster than the bulk. This broad distribution repre-
sents a direct probe of spatially heterogeneous dynamics.
Surprisingly, the stretching exponent β is also broadly
distributed, with a most probable value β̄ ≃ 0.75 much
larger than the bulk βb ≃ 0.5. Elementary systems do not
have the same stretching exponent as the bulk, and sample-
to-sample fluctuations are massive. As shown in Fig. 1(b),
the overlap in individual trajectoriesQαðtÞ is typically more
compressed than its isoconfigurational average hQαðtÞi, but
is quite stretched in samples with small β. Our results
contradict a recent study obtained using frozen cavities
[24], perhaps because relatively large cavities were used.
Our simulations reveal that the stretched exponential
relaxation of the bulk system stems both from a broad
distribution of local relaxation times and from strong
deviations from a local exponential decay. They also
support results from single molecule studies [20] and
electron correlation microscopy [23], and differ from some
earlier conclusions [51].
Our strategy probes structural relaxation locally without

any time averaging. We can then ask how long the dynamic
heterogeneity persists, i.e., how long it takes a spontaneous
fluctuation to return to average behavior. To this end,
we promote the overlap to a two-time correlation,
Qαðtw þ t; twÞ, by recording the dynamics between times
tw and tw þ t starting from configuration α at tw ¼ 0. The
case tw ¼ 0 was considered in Fig. 1. In the opposite limit,
tw → ∞, the system loses memory of the initial condition:
limtw→∞hQαðtw; tw þ tÞi ¼ QbðtÞ. Our goal is to quantify
how this limit is reached in different samples, allowing us
to define a local lifetime for dynamic heterogeneity, as
opposed to global ones discussed before [20]. We define

τðtwÞ from the time decay of hQαðtw þ t; twÞi for each
configuration α.
The results are shown in Fig. 2 for P ¼ 28. For each

sample, we observe that τðtwÞ displays a plateau of duration
tw ∼ τðtw ¼ 0Þ, which simply confirms that no useful
dynamics is happening at times shorter than τ. However,
all samples (fast and slow) return to the bulk value τb over a
similar timescale tw ≈ 50τb, but they do so in a very
asymmetric manner reminiscent of nonlinear aging studies
[52]. Over the explored time window, no pronounced
pressure dependence was detected for this lifetime.
These results are again in harmony with experimental
findings from single molecule studies [20] and earlier
determinations of heterogeneity lifetime [53].
We turn to thermodynamic fluctuations. The order

parameter for a static glass transition is the overlap Qαβ ¼
1=N

P
i;j θða − jrαi − rβj jÞ between a pair ðα; βÞ of equilib-

rium configurations. From the fluctuations of the overlap,
the bulk Franz-Parisi (FP) free energy VbðQÞ is constructed
[44]. This is well studied numerically [37,45,54]. Here,
we focus instead on sample-to-sample fluctuations, about
which little is known at low temperatures. The equili-
brium fluctuations of Qαβ between a fixed reference
configuration α and fluctuating configurations β define
the distribution PαðQÞ ¼ hδðQ −QαβÞi, which yields
VαðQÞ ¼ −ðT=NÞ logPαðQÞ for each sample α. The bulk
free energy VbðQÞ is obtained after averaging over α:
VbðQÞ ¼ VαðQÞ.
Figure 3(a) shows the evolution with P of the bulk FP

potential VbðQÞ. For P ¼ 35 (near the experimental glass
transition), we show VαðQÞ for individual samples. The
evolution of VbðQÞ resembles previous results [54], and
demonstrates the approach to a random first-order phase
transition (possibly) occurring at larger P. The non-
convexity of VbðQÞ at large P stems from using a small

FIG. 2. Evolution of the local relaxation time τðtwÞ as the
system progressively loses the memory of its initial condition and
returns to the average behavior. Fast and slow samples display
asymmetric behavior, but have a similar lifetime of about 50τb.
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N and is absent in larger systems [37]. An estimate of the
bulk configurational entropy [45] follows the free energy
difference ΔVb between high and low Q values, see
Fig. 3(a).
The evolution of VbðQÞ is smooth, but the sample-to-

sample fluctuations observed at each state point are
surprisingly large. For P ¼ 35, we obtain a range of
VαðQÞ resembling the measured VbðQÞ over the range
P ∈ ½28; 40�, i.e., from the mode-coupling crossover to
below the experimental glass transition. This shows that
spatial fluctuations of the configurational entropy are
surprisingly large, which, to our knowledge, has never
been observed before.
To start quantifying these observations, we introduce

three measures: ðΔV; B; χÞ. For each sample, ΔV is
the critical value of the field needed for the function
VαðQÞ − ΔVQ to have two minima of the same height
[see Fig. 3(b)], and thus to induce a discontinuous transition
between high and low Q phases; B is the barrier separating
the two minima, see Fig. 3(b); the susceptibility χ is the
variance of overlap fluctuations at coexistence. Scatter plots
reveal that these three quantities are strongly correlated [for
instance B vs χ in Fig. 3(c)], and thus they describe
well local fluctuations of the FP free energy. The histo-
grams in Figs. 3(d)–3(f) show the evolution of these
fluctuations over a broad range of pressures. There is
considerable overlap between the distributions measured at

well-separated state points, reflecting the large amount of
disorder in supercooled liquids. These fluctuations re-
present a coarse-grained, agnostic, nonmechanical measure
of the thermodynamic stability of the local particle packing,
with no reference to a potential energy landscape [40]
(which is not appropriate for hard spheres anyway). These
results also confirm and quantify the central role played by
self-induced disorder in the thermodynamics of super-
cooled liquids, thus reinforcing analogies with random
field Ising models [14,35,37,55,56].
We come to the third point of the paper. Both the bulk

relaxation time τb and FP potential VbðQÞ (therefore, the
configurational entropy ≈ΔVb) evolve noticeably with P.
A “correlation” necessarily relates log τb to ΔVb, but this
does not imply any causality between configurational
entropy and relaxation time. All previous work thus
instead tested the validity and universality of the Adam-
Gibbs relation [28,29,32], which reads logðτb=τ∞Þ ¼
ðP=ρkBTÞðkBT=ΔVbÞ ∼ P=ΔVb, using notations where
physical dimensions are transparent. Collecting static and
dynamic sample-to-sample fluctuations, we can directly
test whether local fluctuations of the configurational
entropy correlate with local fluctuations of the dynamics.
Such demanding test of a putative structure-dynamics
correlation has never been performed. Our approach also
differs from most parallel studies [12,25–27], because we
(intentionally [57]) do not work at the single particle level.

FIG. 3. (a) Evolution of the bulk Franz-Parisi potential VbðQÞ with pressure. For P ¼ 35, we also show VαðQÞ from multiple
independent samples (thin lines), showing the breadth of self-induced free energy fluctuations. (b) Definition of the free energy
difference ΔV and the barrier B for an individual sample at P ¼ 35. (c) Scatter plot of the barrier B versus the susceptibility χ for
independent samples at different pressures. (d),(e),(f) Histogram of sample-to-sample fluctuations of ΔV, χ, and B.
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A scatter plot of log τ vs 1=ΔV independently obtained
for multiple samples at multiple equilibrium state points is
shown in Fig. 4 to test the Adam-Gibbs relation directly at
the level of local fluctuations. Note that each point
represents a substantial numerical treatment to obtain
accurate and independent values for τ (using isoconfigura-
tional dynamic average) and ΔV (using umbrella sampling
techniques). The observed correlation is quite good and the
data align along the Adam-Gibbs relation, shown with the
straight lines. Interestingly, since B ∼ 1=ΔV, this correla-
tion can be recast as log τ ∼ B, suggesting that B represents
a meaningful candidate for the effective barrier to structural
relaxation. By contrast, we find that the plateau height q
(local Debye Waller factor) correlates weakly with the
dynamics, which appears to contradict models where short-
time dynamics is used to infer structural relaxation [30,31].
Several more tests along these lines could be performed
following the methods introduced above, and the quality of
the various correlations could be quantified further.
Deeply supercooled liquids display broad distributions

of their local physical properties, which are extensively
probed here numerically at extremely low temperatures by
analyzing mesoscopic systems equilibrated with a swap
Monte Carlo algorithm. Each configuration is “typical,” yet
each sample displays static and dynamic properties that
fluctuate wildly, directly impacting all observed bulk
properties. Our results directly establish that deeply super-
cooled liquids are found, at the mesoscale, in a very large
number of distinct packings with distinct properties. This
self-induced heterogeneity represents the real space sig-
nature of the metaphorical rugged free energy landscape.
Static fluctuations are central to random first order tran-
sition theory, but they also exist in simpler plaquette models
[58], although both approaches provide distinct general
perspectives on their dynamical consequences [59,60].

We focused here on an important subset of questions
regarding dynamic heterogeneity and thermodynamic fluc-
tuations, but many more can be tackled using similar tools,
from experimentally relevant questions (e.g., rheology) to
fundamental ones (e.g., extracting coupling constants of
effective field theories).
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