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The appearance of surface distortions on polymer melt extrudates, often referred to as sharkskin
instability, is a long-standing problem. We report results of a simple physical model, which link the
inception of surface defects with intense stretch of polymer chains and subsequent recoil at the region
where the melt detaches from the solid wall of the die. The transition from smooth to wavy extrudate is
attributed to a Hopf bifurcation, followed by a sequence of period doubling bifurcations, which eventually
lead to elastic turbulence under creeping flow. The predicted flow profiles exhibit all the characteristics of
the experimentally observed surface defects during polymer melt extrusion.
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The most important process in plastics manufacturing is
extrusion, where a polymer melt is forced through a die. It
is well known that, as the flow rate increases, the stable
flow turns unstable and the smooth extrudate surface
becomes increasingly wavy and disordered. The surface
in the first observable flow transition consists of semi-
regular grooves that run mainly perpendicular to the flow
direction and resemble the skin of a shark, hence the term
sharkskin instability. This has intrigued the scientific and
industrial communities for over 60 years. It imposes a limit
on the rate of production in polymer processing operations
by decreasing the quality of the product. Although it has
been studied experimentally in great depth [1–4], the
physical mechanisms driving the onset of the instability
remain unclear. Three prevailing physical mechanisms have
been proposed regarding the onset of the instability: (1) the
breakdown of the no-slip condition at the die exit [5–9],
(2) a multivalued flow curve (the so-called shear banding),
[10–13], and (3) the development of intense tensile stresses
at the die exit that force the melt to respond like rubber,
causing crack-like scratches on its surface [2,14–18]. There
is evidence in favor or against these scenarios. For example,
an experimentally observed decrease of slope in shear
stress versus shear rate curves at the onset of sharkskin [5,6]
favors the slip related theories, because it is interpreted as a
loss of friction with the die wall. On the other hand, the
addition of slip-promoting agents, which reduce the tensile
stresses suppresses the instability [15,19,20]. This supports
the strong tensile stress theory, opposing the slip theory.

Simulations with a nonmonotone slip law [9] predicted that
the flow becomes unstable with increasing flow rate, and
the free surface features periodic oscillations. This favors
slip-related theories, but the flow profiles exhibited strong
oscillations in the pressure and velocity throughout the die,
something that is not related with the sharkskin instability
[2,4,6,21]. Additionally, there is no experimental evidence
to support a nonmonotone slip law in melts which exhibit
extrusion instabilities [3,8,22]. These are some examples of
the numerous studies conducted in an effort to uncover the
physical origin of the sharkskin instability. Nevertheless, it
is now agreed [2–4] that sharkskin exhibits three main
characteristics: (1) It is a surface phenomenon; the flow is
distorted and transient only close to the free surface, while
away from it the flow is steady and laminar. (2) The
periodic distortions have very short wavelength and ampli-
tude compared to the radius or width of the die. (3) The
addition of slip-promoting agents on the die wall sup-
presses the onset of sharkskin.
Regarding earlier theoretical models, the strong stress

singularity at the point where the fluid detaches from the
wall has posed severe limitations in analyzing this phe-
nomenon. Any analytical attempts [23,24] refer to steady
flows. Thus, a numerical solution of the governing equa-
tions is necessary. However, this singularity has previously
caused loss of convergence near that point and has triggered
the well-known high Weissenberg number problem
(HWNP) [25]. Moreover, the ratio of length scales between
the die cross section and the sharkskin distortions is over 2
orders of magnitude, requiring an extraordinary computa-
tional cost and time for the accurate solution of the model.
Consequently, theoretical works so far have been per-
formed in unrealistic flow conditions [9,17,18,26] and
have never captured the sharkskin instability.
In this Letter, we present a simple model that captures the

essential physics during polymer extrusion. We model the
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process as a transient, two-dimensional flow, assuming that
the depth of the slit is very long compared to its width
(Fig. 1). The melt is incompressible with density ρ,
interfacial tension σ, relaxation time λ, and zero-shear-rate
viscosity ηp. The width of the die is denoted as 2H.
Assuming planar symmetry, only half of the domain is
considered. The average velocity of the melt at the entrance
of the die is denoted asU. At the die exit, the melt suddenly
meets the ambient air, forming a three-phase contact line,
which is assumed to be pinned, and the contact angle
formed by the melt and the solid is determined by the flow
field. Cartesian coordinates are employed, with the origin
depicted in Fig. 1. At the die wall, we impose the no-slip
and no-penetration conditions that change abruptly at the
die exit to free surface conditions. At the inflow and
outflow boundaries, we impose fully developed flow and
an open boundary condition [27], respectively. The die exit
is located at x ¼ 1.5H, and the outflow boundary at x ¼ 5H.
These lengths do not affect our predictions in any way. We
scale all lengthswithH, all velocitieswithU, and all stresses
with the viscous scale ηpU=H. The dimensionless numbers
that arise are the Reynolds number (Re ¼ ρUH=ηp), the
Stokes number (St ¼ ρgH2=ηp, g: gravitational accelera-
tion), the elastocapillary number (Ec ¼ ηpH=λσ), and
the Weissenberg number (Wi¼ λU=H). In reported
experiments [6,8,15,16,21,28–30], 2H ∼ 0.001 m, and
U ∼ 0.01 m=s, while for a typical melt that produces
sharkskin ηp > 103 Pa s. Thus, we neglect all inertial
(Re < 10−5) and gravitational (St < 10−5) forces and
directly relate the flow rate with Wi.
The rheology of the melt is described by the exponential

Phan-Thien and Tanner (EPTT) model [31], because it can
reproduce very well the rheology of entangled polymer
melts with the minimum number of parameters [32]. Apart
from λ and ηp, the parameter ϵ governs the rheology of the
melt: large values (ϵ ≥ 0.1) describe highly entangled melts
with intense shear- and extension-thinning effects, while
small values (ϵ < 0.1) represent less entangled polymer
melts with mild shear-thinning and extension-hardening
effects [33] (Fig. S2). For any positive value of ϵ, a strictly

monotonic flow curve is predicted, excluding shear
banding. Consequently, the process is governed by only
three parameters: Wi, Ec, and ϵ.
Recently, we performed a linear stability analysis of this

problem [26] and predicted that a Hopf bifurcation occurs at
a critical Wi, and the flow transitions from steady to time-
dependent state [33] (Fig. S4A). We also demonstrated that
the source of the disturbance is located at the die exit [33]
(Fig. S4B).We did not use slip conditions or a nonmonotone
flow curve, butwe related the transition to the strain thinning
of the melt, due to intense tensile stresses at the die exit.
However, numerical issues allowed accessing only low
values of Ec (≤ 10), which do not correspond to melts
under processing conditions where Ec ∼ 1000. Moreover,
linear stability analysis gives only an estimation of the shape
of distortion (Fig. S4B) without predicting the evolution of
the disturbance after the onset of the instability. In the
present nonlinear analysis, we perform transient simulations
with our stabilized finite-element formulation PEGAFEM-
V [39,40], to access the region of the parametric space that
corresponds to realistic flow conditions, study the stability
of the process, and identify the origin of sharkskin. We
emphasize that the new results agree with those of the linear
stability analysis [33] (Fig. S4A) and converge with mesh
and time step refinement [33] (Tables. S1 and S2).
In what follows we adopt as our base case an EPTT fluid

with ϵ ¼ 0.1 and Ec ¼ 1000. These values of ϵ and Ec
represent qualitatively [33] (Figs. S2 and S3) the rheology
of a broad spectrum of melts under processing conditions
[8,20,21]. Starting from low values of Wi (< 0.075), we
find that the flow reaches a steady state, featuring a smooth
extrudate surface. For Wi > 0.075, the flow reaches a
periodic state. Figure 2(a) and Movies S1 and S2 present
the flow profile for Wi ¼ 0.0774 around the die exit, along
with contours of the xx component of the extra stress τxx.
The surface of the extrudate is distorted by traveling waves,
starting from the die exit and heading to the outflow. The
insets in Fig. 2(a) present the height of the free surface (Fs)
very close to the die exit (x ¼ 1.51) versus time, and the
limit cycle in the phase space defined by Fs, τxx, and τxy,
calculated at x ¼ 1.51. The solution is periodic, featuring
only one frequency. Note that the flow oscillates only close
to the free surface, while it is steady away from it. The
contours of τxx reveal very high stress values in a limited
region around the singularity, indicating significant chain
stretch.
Having identified the transition from steady to periodic

flow, due to a supercritical Hopf bifurcation, in agreement
with linear stability [26], we proceed to higher values of
Wi. Up to Wi ¼ 0.0775, the flow reaches periodic states
with a single frequency; shortly after that value of Wi, the
system reaches a periodic state that features two discrete
frequencies [Fig. 2(b), Movies S3 and S4]. The free surface
is more distorted, featuring disturbances with greater
amplitude, and the period of the oscillation has been almost

FIG. 1. Schematic of the polymer melt extrusion process and an
indicative domain tessellation. For a magnification of the mesh
very close to the singularity see Fig. S1.
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doubled. Clearly, a period-doubling bifurcation has
occurred. An additional very small increase in Wi leads
to a new flow configuration [Fig. 2(c), Movies S5 and S6].
At Wi ¼ 0.07829, four discrete frequencies appear. A
period-doubling bifurcation has taken place again, as
depicted in the shape of the limit cycle. The free surface
is very wavy, but still periodic. Increasing Wi further, we
arrive at a flow configuration with no discrete frequencies for
Wi ¼ 0.07836 [Fig. 2(d), Movies S7 and S8]. The signal is
chaotic, while the limit cycle has turned into a strange
attractor. In other words, the flow is now turbulent. To be
more precise, we find that elastic turbulence under creeping
flow (Re ¼ 0) is localized close to the free surface.
This phenomenon is a usual route to chaos via a

sequence of period-doubling bifurcations. It is noteworthy

that the predicted ratio ðWic3 −Wic2Þ=ðWic2 −Wic1Þ ¼
4.1667 approximates the first Feigenbaum constant
(δ ¼ 4.6692…), as it should during a route to chaos.
Increasing surface complexity of the extrudate has been
observed experimentally [41–44], but has never been
attributed to a sequence of period-doubling bifurcations
that lead to elastic turbulence. Moreover, our predictions
regarding length scales and Wic1 < 0.1 agree with experi-
ments for monodisperse melts [20,21]. The spatial form of
the wave, along with qualitative comparisons to experi-
mental data are given in [33]. Finally, to ensure that the
predicted instability is the sharkskin, we verified that
adding slip to the die wall suppresses the instability [33].
Having answered the question: How does the smooth

extrudate become wavy? we proceed to a quest for an

FIG. 2. The route to elastic turbulence for ϵ ¼ 0.1 and Ec ¼ 1000. Flow profiles for various Wi close to the die exit, along with the free
surface height (Fs) close to the die exit (x ¼ 1.51) versus time, and the limit cycle in the phase space defined by Fs, τxx, and τxy,
calculated at x ¼ 1.51. (a) Wi ¼ 0.0774 (single frequency), (b) Wi ¼ 0.07808 (two frequencies), (c) Wi ¼ 0.07829 (four frequencies),
(d) Wi ¼ 0.07836 (chaotic). For the spatial form of the wave see [33].
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answer to the question: Why does this happen? Thus, we
investigate the effect of the melt rheology on the stability of
the process. Figure 3(a) presents the stability map in the
parameter space defined by Wi and ϵ. Low values of ϵ
stabilize the flow, while intermediate values destabilize it.
The minimum is observed because as ϵ is increased beyond
it, the fluid becomes increasingly strain thinning, with
capillarity gaining ground and stabilizing the flow. As
ϵ → 0, the fluid ceases to exhibit shear thinning and
becomes infinitely extension hardening (EPTT model
reduces to the upper-convected Maxwell (UCM) model
when ϵ ¼ 0). In the limit of the UCM model the flow
reaches a steady state with no surface distortions. These
observations are consistent with experiments [33,45,46],
which reported that polymers exhibiting long chain branch-
ing and strain-hardening effects (ϵ → 0) are less sensitive to
sharkskin. Moreover, the linear stability analysis of the
extrusion process with dominant and finite capillary effects
[18,26], revealed that strain thinning has a destabilizing
effect. However, strain thinning refers both to shear and
extension thinning, but each effect has a very different impact
on the flow. To distinguish between them, we performed
simulations with the linear Phan-Thien and Tanner (LPTT)
model, which predicts shear thinning, but extension hard-
ening [33] (Fig. S7). In all caseswith theLPTTmodelwe find
a steady state, without surface oscillations [33] (Fig. S8A).
Consequently, extension thinning plays a crucial role in the
onset of sharkskin. Although this is a notable conclusion, it
does not constitute a physical mechanism for flow instability.
Moreover, it does not resolve all issues because it suggests
that any melt with extension thinning will present sharkskin.
To test whether any melt exhibiting extension thinning

can produce sharkskin, we studied another constitutive
model (finite extensible Giesekus, FEG [47]) that yields
similar predictions with the EPTT model in steady shear
and uniaxial extension [33] (Fig. S7). To our surprise, the
flow always resulted in a steady state with smooth extrudate
surface [33] (Fig. S8B). This turned our attention to
dynamic rheological properties. In transient elongation,

we observe that the EPTT model predicts an overshoot in
the startup extensional viscosity just before steady state is
reached under high extension rates [Fig. 3(b)]. This over-
shoot can be interpreted as a chain recoil after elongation.
This response is observed in experiments of polymer melts,
but is an unusual feature of a constitutive model, as their
vast majority predicts a monotone startup extensional
viscosity. Keeping this in mind, we propose the following
physical mechanism: (1) If the melt exhibits extension
thinning, reduced flow resistance arises around the die exit.
(2) With the melt becoming rheologically softer and more
prone to deformation, this chain recoil effect after the
abrupt elongation at the die exit decelerates the flow,
causing nonmonotonicity in the velocity gradient and, thus
the distortions are formed.
This physical mechanism is depicted in Figs. 3(b)–3(d)

and Movie S9. Figure 3(b) presents the startup extensional
viscosity of melt 1 (FEG, red curve), which does not exhibit
an overshoot, and melt 2 (EPTT model, blue curve) which
does. Following the path of a fluid parcel that flows near the
singularity, the displacement along a streamline [Figs. 3(c)
and 3(d)] corresponds to time in the homogenous extension
experiment [(Fig. 3(b)]. In melt 1, the chains relax
monotonically after being exposed to the extreme exten-
sional flow field at the die exit. On the contrary, the chains
of melt 2 recoil after passing the die exit, interfering with
the flow, causing deceleration in the x direction, which in
turn causes acceleration in the y direction (mass conserva-
tion), and the waves are formed. The melt that flows away
from the singularity is not exposed to high extension rates,
and therefore, it does not present significant extension
thinning and recoil during elongation, relaxing monoton-
ically as it exits the die. This mechanism also explains why
the distortions take place only close to the surface of the
extrudate.
We demonstrated that the root of the sharskin instability

lies in the variation of polymer chain conformations under
extensional flow. We propose that the combination of
extension thinning of the polymer melt in its bulk and

FIG. 3. (a) Critical Weissenberg number (Wic) versus ϵ. (b) Startup extensional viscosities versus time (t) of polymer melts 1 and 2 at
extension rate 100 s−1, normalized by the steady value of the extensional viscosity at the same extension rate. (c) and (d) Flow profiles
near the die exit for polymer melts 1 and 2, with a streamline superimposed on contours of the xx component of the deformation rate
tensor.
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recoil of the polymer chains in transient elongation is the
only prerequisite for the onset of surface distortions.
According to the results of our simple physical model,
which is based on principles and methods of continuum
mechanics, we believe that we have captured the essence
and explained the mystery behind the long-disputed shark-
skin instability. The present work advances the fundamen-
tal understanding of the relation between the microscopic
conformations of polymer chains with macroscopically
observed phenomena and opens the way for studying
distortions that arise at even higher flow rates, such as
the stick-slip instability and the gross melt fracture.
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