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The inverse Faraday effect (IFE) in superconductors is proposed, where a static magnetization is
generated under the influence of a circularly polarized microwave field. Classical modeling of the IFE
explicitly provides superconducting gyration coefficient in terms of its complex conductivity. The IFE is
then considered as a source of nonlinearity and gyrotropy even at a low-power microwave regime giving
rise to a spectrum of phenomena and applications. Microwave-induced gyroelectric conductivity, Hall
effect, microwave birefringence, flux quantization, and a vortex state are predicted and quantitatively
analyzed. A peculiar microwave birefringence in gyrotropic superconductors due to radical response of
superelectrons has been highlighted.
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Introduction.—Nonlinear microwave response of super-
conducting structures is a core subject not only in probing
the physics of superconductivity [1] but also implemented
in numerous applications ranging from quantum metrology
to superconducting qubits and microwave quantum optics
[2]. The microwave nonlinearities in superconducting
structure possess diverse origins but mostly are attributed
to nonlinear kinetic [3,4] and Josephson inductance [5,6]
including Kerr-type [7,8], Duffing and anharmonicity
[9,10], weak links [11–13], phase slip formation [14],
and vortex dynamics [15,16].
Borrowing from optomagnetics, a less-explored field in

nonlinear optics [17], a microwave-induced nonlinearity in
superconductors based on the inverse Faraday effect (IFE)
is proposed in this Letter. The IFE refers to the generation
of a static magnetic field by not linearly polarized, e.g.,
circularly polarized, light [18]. The purely nonlinear effect
arising from the IFE is solely based on the gyration of the
time-varying electric field and it does not directly link to
any linear electromagnetic properties of the materials such
as Kerr-type that is related to the linear refractive index. The
IFE in a superconductor is based on angular momentum
transfer between the circularly polarized microwave field
and a superconductor. Electric field gyration creates an
encircling supercurrent and a normal current associated
with a local static magnetic field opposing the microwave
field. The IFE can be employed not only to make the tunable
gyrotropic superconductor prevailing upon phenomena

such as Hall effect and microwave birefringence but also
to derive type II superconductors to vortex state.
In this Letter I first develop a classical formalism to find

the microwave induced static magnetic field through a
gyration coefficient that is proportional to the complex
conductivity of the superconductor. The critical microwave
field to suppress superconductivity is derived in terms of
the critical magnetic field. Turning to IFE consequences in
superconductors, the gyroelectric conductivity and micro-
wave-induced Hall effect, as experimental tools to measure
superconducting gyration coefficient are analytically dis-
cussed. Gyroelectric conductivity is also used for linear and
circular birefringence for a microwave pump-probe sce-
nario. Finally, I propose an embodiment of the dynamic
and controllable flux quantization and vortex state in
type II superconductors using a circularly polarized micro-
wave field.
Modeling of inverseFaraday effect in superconductors.—

The electrodynamic response of a superconductor is
considered in the two-fluid model. The equation of motion
for superelectrons and normal electrons under the influence
of electric field Eðr; tÞ and its associated magnetic field
Bðr; tÞ can be phenomenologically described by the
London equations

m
d
dt

vs ¼ eEðr; tÞ þ evs × Bðr; tÞ ð1Þ

m
d
dt

hvni þmΓhvni ¼ eEðr; tÞ þ ehvni ×Bðr; tÞ ð2Þ

where m is the mass of an electron, e is charge of an
electron, Γ ¼ ð1=τÞ is the inverse of momentum relaxation
time for normal electrons, and vs and hvni are the
superelectron and average normal electron velocities,
respectively. We consider a circularly polarized plane
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electromagnetic field with pumping frequency, ωp, travel-
ing normal to the surface of a semi-infinite superconductor,
i.e., at z ¼ 0, in the following form:

E ¼ RefẼeiωptg ¼ RefEoðxþ iyÞe−αpzeiðωpt−βpzÞg ð3Þ
B ¼ RefB̃eiωptg ¼ RefBoðy − ixÞe−αpzeiðωpt−βpzÞg; ð4Þ
where x, y, z are Cartesian unit vectors, 0 < ℏωp < 2Δ, Δ
being a superconducting energy gap, and αp and βp are the
propagation loss and the propagation constant, respectively.
The low-frequency propagation characteristics can be
derived based on the two-fluid model [19]. When the
circularly polarized wave interacts with the ensemble of
free superelectrons and normal electrons, its angular
momentum generates a local circulating supercurrent and
normal current in the superconductor that produces a
magnetic field parallel to the microwave field in the
opposite direction. This is a manifestation of the IFE where
high-intensity circularly polarized light generates dc mag-
netization in matter, a theoretical prediction by L. Pitaevskii
in 1961 [18] and its subsequent experimental demonstra-
tion in 1965 [20]. The magnetization in a superconductor,
Ms can be found as [17]

Ms ¼
nse
2m

Ls þ
nne
2m

Ln ð5Þ

where Ls ¼ rs × ps is the magnetic moment of super-
electrons and Ln ¼ rn × hpni is the magnetic moment of
normal electrons in terms of their momenta ps and hpni,
respectively. For the intermediate temperature range,
0 < T < Tc, both superelectrons with density number
nsðTÞ and normal electrons with density number nnðTÞ
coexist in the form of

n ¼ nsðTÞ þ nnðTÞ ¼ n

�
1 −

�
T
Tc

�
s
�
þ n

�
T
Tc

�
s

ð6Þ

where s is an empirical exponent, i.e., s ¼ 4 for low-
temperature superconductors and s ¼ 2 for high-
temperature superconductors and n is the total number
density [21]. Considering the microwave signal given in
Eqs. (3) and (4), the solutions of Eqs. (1) and (2) can yield
the dc magnetization in the superconductor as

Mdc ¼ iγðωp; TÞẼ × Ẽ� ð7Þ

where the gyration coefficient γðωp; TÞ is

γðωp; TÞ ¼
−e3

4m2ωp

�
ns
ω2
p
þ nn
ω2
p þ Γ2

�

≈
−e

4mωp

�
σ2
ωp

þ σ1
Γ

�
: ð8Þ

Equation (7) is in the form of Pitaevskii’s relationship [18]
indicating that the dc magnetization solely depends on the
gyration of the electric field, through the relationship of
iẼ × Ẽ� ¼ 2zjEoj2e−2αpz. This fact is signified by the
gyration coefficient, γðωp; TÞ, reminiscent of magneto-
gyration coefficients in magnetooptic materials [22]. The
microwave-induced dc magnetization in a superconductor
is inherently a nonlinear electrodynamic process rooted in
the IFE but the gyration coefficient can be approximated in
the low frequency regime, i.e., ω ≪ Γ, in terms of the linear
complex conductivity, σ1 − iσ2 based on London equations
[23]. Note that the magnetic field associated with the
microwave field has no contribution to dc magnetization,
ruling out the direct magnetization of the superconductor.
In fact, the linear response of the superconductor due to
the incident electromagnetic field, i.e., Eqs. (3) and (4),
creates a time-dependent supercurrent and normal current
according to Maxwell’s and London equations, i.e.,
J̃ ¼ J̃s þ J̃n ¼ ðσ1 − iσ2ÞẼ. For a circularly polarized
electric field there is a time-dependent circular supercurrent
having x and y components. In addition, the microwave-
induced dc magnetization forms a supercurrent density due
to the nonlinear response based on the IFE and is shown by
Jinds . The induced supercurrent due to dc magnetization
opposes to the incident electric field to maintain the
Meissner effect and can be written as

Jinds ¼ ∇ ×Mdc ¼ Mdc

�
x
∂fðx; yÞ

∂y − y
∂fðx; yÞ

∂x
�
; ð9Þ

where we consider the magnetization profile dictated by
microwave radiation in the xy plane to be considered by an
arbitrary function fðx; yÞ. The induced dc magnetic vector
potential, Aind, can also be defined as

∇ ×Aind ¼ μoMdc: ð10Þ

At temperatures much lower than the critical temperature,
the microwave field propagates in the low-loss regime
penetrating the superconductor sample and the strength of
dc magnetization decreases exponentially. Although the
strength of the dc magnetization is more pronounced at
lower frequency, i.e., Mdc ∝ ω−3, but a lower frequency
leads to a larger radiation area in the order of λ2, where λ is
the free-space wavelength of the microwave field.
In the type I superconductor, a magnetic field is screened

until the critical field Hc is reached. In the case of
microwave-induced dc magnetization, the critical field
Hc is reached where the superposition of dc magnetization
and the applied microwave field amplitude Ho ¼ ðBo=μoÞ
adds up to the critical field. Then there is a critical electric
field, Ec, where the superconducting phase is thermody-
namically unstable, and that can be written as
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Ec ¼
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 16η4oγ

2ðω; TÞH2
c

p
− 1Þ1=2

2
ffiffiffi
2

p
γðω; TÞηo

ð11Þ

where ηo is the free space characteristic impedance.
Gyroelectric conductivity and Hall effect.—The micro-

wave-induced dc magnetization breaks the directional
symmetry making a superconductor a gyrotropic material
represented by a conductivity tensor, the so-called gyro-
electric conductivity. Referring to the London model, one
can find the gyroelectric conductivity tensor, ¯̄σ, relating the
total current density J to the applied weak electric field E,
i.e., J ¼ ¯̄σE. Considering Ẽ ¼ xẼx þ yẼy þ zẼzz, with
angular frequency ω, the gyroelectric conductivity tensor
can be written as

¯̄σðωsÞ ¼

0
B@

σs þ σn −i ωc
ω σs þ τωcσn 0

i ωc
ω σs − τωcσn σs þ σn 0

0 0 σ1 − iσ2

1
CA

ð12Þ

where

σs ¼
iωe2ns

mðω2
c − ω2Þ ð13Þ

σn ¼
nne2τð1þ iωτÞ

m½ð1þ iωτÞ2 þ ω2
cτ

2� ð14Þ

and the microwave-induced cyclotron angular frequency is

ωc ≜ 2eμo
m

γðωp; TÞjEoj2: ð15Þ

Note that the cyclotron frequency should be smaller than
the gap frequency, otherwise the energy of the microwave-
induced magnetic moments is larger than Cooper pair
binding energy leading to suppressed superconductivity.
Therefore, the IFE is pronounced in the regime where the
microwave pump and signal frequencies are smaller than
the cyclotron and gap frequencies and the field amplitudes
are smaller than the critical electric field. The gyroelectric
conductivity can be tracked down due to the contribution of
microwave-induced magnetization to the longitudinal con-
ductivities, σxx ¼ σyy ¼ σs þ σn through the cyclotron
frequency ωc. Gyroelectric conductivity also leads to the
Hall effect where the microwave-induced magnetization
causes a dc electric field to develop across the super-
conducting wire perpendicular to the direction of micro-
wave propagation, i.e., the z direction [24]. Consider a long
superconducting wire along the x direction with the
corresponding length scales at lx, ly, and lz, and in the
presence of a longitudinal dc electric field along the x
direction and a circularly polarized microwave signal
propagating along the z direction as shown in Fig. 1.
The microwave-induced dc magnetization produces the

Hall field along the y direction, where the current cannot
flow out of the wire along the y direction, i.e., Jy ¼ 0.
The Hall resistance is then given by

RHall ¼
1

lz

iωc
ω σs − τωcσn

ðσs þ σnÞ2 þ ðiωc
ω σs − τωcσnÞ2

����
ω¼0

ð16Þ

where the microwave field decay has not been considered,
therefore, the length should be chosen less than the inverse
of the field attenuation constant, i.e., lz < α−1p . The Hall
resistance shows the contribution from both superelectrons
and normal electrons in the superconducting wires and well
into the superconducting state the Hall resistance will be

RHall ¼
μoλ

2
L

lz
ωc ð17Þ

where λL is the London penetration depth. Equation (17)
offers a way to measure the gyration coefficient of
the superconductor through the Hall resistance measure-
ment. Close to the critical temperature the Hall resistance
tends to its normal value of RHall ¼ ðμoMdc=nnelzÞ ¼
½2μoγðωp; TÞ=nnelz�jEoj2. This result conforms the linear
dependency of the Hall resistance to the microwave-
induced dc magnetization while the longitudinal resistance
is unaffected by the microwave signal.
Gyroelectric birefringence.—Another feature of the

gyroelectric conductivity in a superconductor is the micro-
wave birefringence. According to Maxwell’s equations, the
conductivity tensor, Eq. (12), yields the anisotropic per-
mittivity tensor as

¯̄ϵr ¼ 1 −
i

ωϵo
¯̄σ ¼

0
B@

ϵ0r − iϵ00r ϵ0xy − iϵ00xy 0

−ϵ0xy þ iϵ00xy ϵ0r − iϵ00r 0

0 0 ϵ0zz − iϵ00zz

1
CA:

ð18Þ

FIG. 1. A superconducting wire is illuminated by the circularly
polarized microwave pump signal in the presence of a dc electric
field, and Ex develops Hall voltage VHall.
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Note that the superconductor’s relative permittivity consists
of a large negative real part where the electromagnetic field
is weak with a frequency significantly smaller than its gap
frequency and below its critical temperature. Now, if a
weak linearly polarized wave with a frequency ofω < ωc is
launched to the superconductor along the z axis copropa-
gating with the microwave pump field with frequency ωp, it
experiences birefringence leading to polarization rotation.
If the permittivity tensor is diagonalized in the coordinate
system with orthogonal unit vectors e� ¼ ð1= ffiffiffi

2
p Þðx� iyÞ,

then the linearly polarized wave has two normal propaga-
tion modes with relative permittivities ðϵ0xx � ϵ00xyÞ −
iðϵ00xx ∓ ϵ0xyÞ while the z axis acts as the uniaxial optical
symmetry. The weak signal entering the gyrotropic super-
conductor decomposes into the slow component with the
complex propagation constants of

α1 þ iβ1 ¼
ko
2

ϵ00xx − ϵ0xyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ0xx þ ϵ00xy

p þ iko
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ0xx þ ϵ00xy

q
ð19Þ

and the fast component having the following complex
propagation constant of

α2 þ iβ2 ¼ ko
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ00xy − ϵ0xx

q
þ i

ko
2

ϵ00xx þ ϵ0xyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ00xy − ϵ0xx

p ð20Þ

where ko ¼ ð2π=λoÞ ¼ ðω=cÞ is the free space wave
number in terms of wavelength λo and c as the speed of
light. The dependence of the real and imaginary parts of the
relative permittivity on the microwave induced magneti-
zation leads to linear birefringence (Cotton-Mouton effect)
and a circular birefringence (Faraday effect), respectively
[25]. In the case of ω < ωc < ωs one can find the rotation
angle of the weak signal per length, commonly known as
the rotatory power, i.e., ϕ, as

ϕ ¼ jβ1 − β2j
2

≈
ωsffiffiffiffiffiffiffiffiffi
ωωc

p ð21Þ

where the approximation is valid for T < Tc. Equation (21)
highlights a radically different response of superelectrons
to the microwave-induced magnetization than normal
electrons. For dielectrics and metals, the rotation angle is
quadratically dependent on the pump electromagnetic field,
i.e., optical field, leading to a Verdet constant [17,26] that is
not the case for superconductors.
Flux quantization.—Consider the macroscopic quantum

model of superconductivity where the local density of
superelectrons in its ground state can be described by a
macroscopic wave function Ψðr; tÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nsðr; tÞ
p

eiθðr;tÞ
obeying the Schrödinger equation [27]. In the presence
of a magnetic vector potential the supercurrent reads

ΛJsðr; tÞ ¼ ½ðℏ=2eÞ∇θ −Aðr; tÞ� where Λ ≜ ðm=2nse2Þ
is the London parameter. Suppose we integrate the

supercurrent equation about a closed contour within the
superconductor where the path is either in the bulk super-
conducting region or the multiply connected region in the
presence of a circularly polarized field. Assuming that
jΨðr; tÞj is a well-defined function then the line integration
of supercurrent equation along the contour C encircling the
surface S yields the following fluxoid quantization expres-
sion:

I
C
iΛγðω; TÞ∇ × ðfðx; yÞẼ × Ẽ�Þ:dl

þ μo

Z
S
iγðω; TÞfðx; yÞẼ × Ẽ�:dS ¼ nΦo ð22Þ

where Φo is the flux quantum, n represents a winding
number of the macroscopic wave function. The left-hand
side of Eq. (22) represents the electric field-induced fluxoid
in the superconductor. Thus, if the superconductor is
magnetized by the circularly polarized microwave field,
once the field is removed the trapped flux inside the
superconductor is quantized. This might offer a new way
to magnetize and demagnetize superconductors with inci-
dent microwave field.
Vortex state.—Consider a type II superconductor where

the Ginzburg-Landau parameter κ ¼ ðλ=ξÞ > ð1= ffiffiffi
2

p Þ, that
is defined as the ratio of its penetration depth λ to its
coherence length ξ. In the mixed state, the magnetic flux
penetrates the type II superconductor starting at lower
critical field Hc1 ¼ ðΦo=4πμoλ2Þ lnðλ=ξÞ in the form of
triangular array of vortices until reaches its upper critical
field Hc2 ¼ ðΦo=2πμoξ2Þ. In order to derive the type II
superconductor to its mixed states by the microwave-
induced IFE, we need to satisfy the inequality relation
for the electric field amplitude as Ec1 < Eo < Ec2 where

Ec1;2 ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 16η4oγ
2ðω; TÞH2

c1;2

q
− 1

	
1=2

2
ffiffiffi
2

p
γðω; TÞηo

; ð23Þ

By turning on and off the microwave field and controlling
the pump frequency and its amplitude one can dynamically
generate and tune vortices in the superconductors without
applying a magnetic field.
For Nb with ξ ¼ 38 nm and λL ¼ 39 nm at zero temper-

ature the corresponding critical magnetic fields are
Bc1 ¼ 2.8 mT, Bc ¼ 200 mT, and Bc2 ¼ 228 mT, leading
to the critical electric fields Ec1 ¼ 28.55 μV=m,
Ec ¼ 240 μV=m, and Ec2 ¼ 257 μV=m at 3 Mrad=s pump
angular frequency. The cyclotron frequency for the first
critical field in Nb is 0.49 Grad=s. This example reveals
that the microwave-induced IFE can happen at low-power
electric field excitation in the absence of any other
stimulation such as a biasing current or magnetic field.
Conclusion.—I have explored the possibility of the IFE

in superconductors as a new source of nonlinearity and
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gyrotropy. They offer novel applications to control super-
conductivity in a dynamic and fully controllable fashion
that is solely enabled by a microwave polarization degree of
freedom. New readout electronics for superconducting
qubits and cavity QED circuits can be envisioned where
a train of linearly and circularly polarized microwave
pulses can potentially control the timing of qubit initial-
ization, computation, and measurement.
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