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We consider a system of charged one-dimensional spin-1
2
fermions at low temperature. We study how the

energy of a highly excited quasiparticle (or hole) relaxes toward the chemical potential in the regime of
weak interactions. The dominant relaxation processes involve collisions with two other fermions. We find a
dramatic enhancement of the relaxation rate at low energies, with the rate scaling as the inverse sixth power
of the excitation energy. This behavior is caused by the long-range nature of the Coulomb interaction.
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The Tomonaga-Luttinger liquid theory is widely used to
describe low-energy properties of interacting fermions in
one dimension [1]. It is based on the model of interacting
fermions with linear dispersion, which admits an exact
solution. The resulting excitation spectrum is that of a
system of noninteracting bosons [2]. This idealization is
appropriate in the low-energy limit. Importantly, this model
is free of inelastic scattering, and thus it cannot describe
relaxation of the system toward equilibrium.
Recent theoretical progress has shown the importance of

the nonlinear corrections to the spectrum because they affect
response functions and enable quasiparticle relaxation [3,4].
Experiments with one-dimensional conductors support
these findings. In particular, the behavior of the response
functions was probed in Refs. [5,6], equilibration rates for
hot electrons and holes were measured in Ref. [7], and
peculiar features of the relaxation of very hot electrons were
observed in Ref. [8]. These experiments have demonstrated
the crucial role of the curvature of the spectrum of electrons.
Significant theoretical progress has been achieved in the

case of weakly interacting fermions with a quadratic
spectrum [3,9]. In one dimension, pair collisions result in
identical sets of momenta before and after scattering. As a
result, the decay of quasiparticles is controlled by three-
particle scattering processes [10]. For quasiparticles with
energies near the Fermi level, the two types of processes
shown in Fig. 1 should be considered. In the initial state, the
scattering processes of type (a) [shown in Fig. 1(a)] have one
particle with the opposite sign of momentum from the other
two, whereas all three particles are near the same Fermi point
for the processes of type (b) [shown in Fig. 1(b)]. Due to the
conservation laws, the final states of the three particles are in
the same configuration as the initial ones. It is worth noting
that the processes of type (b) are allowed only at finite
temperature T, whereas those of type (a) bring about the
relaxation of quasiparticles even at T ¼ 0 [9].

The relaxation of quasiparticles in the system of spin-1
2

fermions with weak Coulomb repulsion was considered
in Ref. [11]. At zero temperature, a quasiparticle with
the energy ϵ above the Fermi level decays with the rate
τ−1 ∝ ϵ2 [12]. At finite temperatures, this result applies as
long as ϵ ≫

ffiffiffiffiffiffi
Tμ

p
, where μ is the chemical potential of the

Fermi gas. At energies below
ffiffiffiffiffiffi
Tμ

p
, the quasiparticle

relaxation rate was found to have only a weak dependence
on energy: τ−1 ∝ ln2ðμ=ϵÞT. Both rates are due to the
processes shown in Fig. 1(a) [13].
It is important to note that in Ref. [11], the Coulomb

interaction was assumed to be screened at small momentum
transfers by a nearby gate, which enabled the authors
to neglect the contribution of type (b) processes to the
relaxation rate. In this Letter, we show that type (b) proc-
esses lead to a dramatically different behavior in the
unscreened case. We found that at quasiparticle energies
below

ffiffiffiffiffiffi
Tμ

p
, it gives the dominant contribution to the

(a) (b)

FIG. 1. Different scattering mechanisms that contribute to
relaxation of quasiparticles in a one-dimensional system of weakly
interacting fermions. At T ¼ 0, only processes of type (a) are
allowed. At nonzero temperature, processes of type (b) are
responsible for dominant contribution to relaxation rate at energies
ϵ ≪

ffiffiffiffiffiffi
Tμ

p
.
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relaxation rate, which behaves as τ−1b ∝ μ3T4=ϵ6; see
Fig. 2 [12]. This implies a drastic enhancement of the rate
as the quasiparticle excitation energy ϵ drops below the
characteristic energy

ffiffiffiffiffiffi
Tμ

p
, which is in contrast to the weak

energy dependence of τ−1 ∝ ln2ðμ=ϵÞT for the screened
case [11]. This behavior is qualitatively different from that
of quasiparticles in most other systems of fermions, where
the relaxation rate decreases at lower energies. For exam-
ple, in three-dimensional Fermi liquids, τ−1 ∝ ϵ2 [19].
We study a one-dimensional system of fermions with

quadratic dispersion εp ¼ p2=2m and a weak two-body
interaction. In the second quantization, the latter is
described by

V̂ ¼ 1

2L

X
p1 ;p2 ;q
σ1 ;σ2

VðqÞâ†p1þq;σ1 â
†
p2−q;σ2 âp2;σ2 âp1;σ1 : ð1Þ

Here, â and â† are the fermionic spin-1
2
operators obeying

the standard anticommutation relations, L is the system
size, and VðqÞ is the Fourier transform of the two-body
interaction potential. For electrons in a quantum wire, the
latter has the Coulomb form UðxÞ ¼ e2=jxj that should be
cut off at short distances by the width of the wire w. Here, e
denotes the electron charge. At small momenta jqj ≪ ℏ=w,
the Fourier transform of the interaction potential is
VðqÞ ¼ 2e2 ln ðℏ=jqjwÞ.
Let us consider a right-moving quasiparticle well above

the Fermi level, i.e., with energy ϵ ¼ εp − μ ≫ T, where p
denotes the quasiparticle momentum. Such an energetic
quasiparticle, on average, loses its energy due to collisions
with other quasiparticles, and thus drifts toward the Fermi
level. The relaxation proceeds predominantly via three-
particle scattering processes where the other two quasi-
particles are near the Fermi level. In this case, the rate of
energy change of the initial quasiparticle is given by

_ϵ ¼ 1

2

X
p1>p2>p3
p0
1
>p0

2
>p0

3

ðεp0
1
− εp1

ÞWp0
1
;p0

2
;p0

3
p1;p2;p3

× np2
np3

ð1 − np0
1
Þð1 − np0

2
Þð1 − np0

3
Þδp;p1

: ð2Þ

Here, W
p0
1
;p0

2
;p0

3
p1;p2;p3

is the scattering rate of the three fermions
with momenta p1, p2, and p3 into p0

1; p
0
2, and p0

3 summed
over all spin indices, whereas np denotes the Fermi
distribution function. The prefactor 1

2
in Eq. (2) compen-

sates for the summation over the spin of the initial
quasiparticle. The main focus of this Letter is the quasi-
particle relaxation that arises due to processes shown in
Fig. 1(b). In this case, all the momenta that participate in the
sum of Eq. (2) are positive.
The conservation laws of momentum and energy

enable us to estimate the momentum change of the initial
quasiparticle in a three-particle collision. For quadratic
dispersion, we find

p1 − p0
1 ¼

ðp0
3 − p3Þðp0

3 − p2Þ
p1 − p0

2

: ð3Þ

For the typical processes shown in Fig. 1(b), the momenta
p2, p3, and p0

3 are near the Fermi point, and jp0
3−p3j;

jp0
3−p2j∼T=vF, where vF is the Fermi velocity. In

combination with the momentum conservation law, this
yields

vFjp1 − p0
1j ∼

T2

ϵ
≪ ϵ: ð4Þ

Thus, for type (b) processes, both the initial and final states
have one highly excited quasiparticle, whereas the other two
are always near the Fermi level. This enables us to identify
the fermion at p0

1 as a new state of the initial quasiparticle
after the scattering event. Equation (2) shows how the energy
of this quasiparticle changes with time. We define

1

τ
¼ −

_ϵ

ϵ
ð5Þ

as the energy relaxation rate. In this Letter, we distinguish
it from the quasiparticle decay rate, which is obtained by
omitting ðεp0

1
− εp1

Þ in Eq. (2).
For the processes shown in Fig. 1(a), after the scattering

event, the two right-moving quasiparticles have energies on
the order of ϵ [11]. This is qualitatively different from the
case of type (b) processes, where only one quasiparticle
in the final state has energy well above T. In Ref. [11],
the definition of the energy relaxation rate equivalent to
Eqs. (2) and (5) was applied to account for the effect of a
finite temperature on the relaxation due to the processes
of type (a). This means that out of the two right-moving
quasiparticles with energies much greater than T, the one

FIG. 2. Sketch of energy dependence of quasiparticle relaxation
rate for spin-1

2
fermions with Coulomb (this work) and screened

Coulomb (Ref. [11]) interactions. In former case, there is rapid
increase of rate at energies below

ffiffiffiffiffiffi
Tμ

p
as opposed to a gradual

logarithmic rise in the latter case. A similar sharp increase of the
relaxation rate at low energies also occurs for holes.
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with the higher momentum was identified as a new state of
the initial quasiparticle.
The scattering rate entering Eq. (2) can be found using

Fermi’s golden rule, where the matrix element is obtained
in the second-order perturbation theory in the interaction
given by Eq. (1) [10,20]. In order to take advantage of the
conservation laws, we express the momenta p1, p2, and p3

in terms of the new variables P, E, and α as

pj ¼
1

3
P − 2

ffiffiffiffiffiffiffi
mE
3

r
cos

�
α −

2πj
3

�
; j ¼ 1; 2; 3: ð6Þ

Here, P ¼ p1 þ p2 þ p3 is the total momentum of three
particles, whereas E ¼ εp1

þ εp2
þ εp3

− P2=6m is their
total energy in the center-of-mass frame [21]. There are
analogous formulas for the primed momenta. The con-
servation laws dictate that collisions do not affect P and E,
thus only changing the angle variable, α → α0. This
observation dictates the general form of the three-particle
scattering matrix element

W
p0
1
;p0

2
;p0

3
p1;p2;p3

¼ ΘðE; α; α0ÞδðE − E0ÞδP;P0 : ð7Þ

Starting with a general expression for W
p0
1
;p0

2
;p0

3
p1;p2;p3

[10,20],
after a somewhat tedious calculation, we obtain Eq. (7) with

Θ ¼ 2592πe8

ℏL4E2
ln2

�
ℏ2

mw2E

�
fðαþ α0Þ þ fðα − α0Þ
½cosð3αÞ − cosð3α0Þ�2 ; ð8Þ

fðθÞ ¼
�X3
j¼1

sin

�
θ

2
þ 2πj

3

�
ln

���� sin
�
θ

2
þ 2πj

3

�����
�
2

: ð9Þ

This result applies to any three-particle scattering process,
provided that lnðℏ2=mw2EÞ ≫ 1. The latter condition takes
the forms ℏ=wpF ≫ 1 and ℏvF=wϵ ≫ 1 for the processes
of types (a) and (b), respectively. Here, pF ¼ ffiffiffiffiffiffiffiffiffi

2mμ
p

is the
Fermi momentum.
We begin our evaluation of the relaxation rate of a

quasiparticle with the energy ϵ ¼ εp − μ via type (b) proc-
esses by analyzing Eq. (2). The distribution functions at
low temperature severely constrain the configurations of
momenta, which give significant contribution to _ϵ. In the
zero temperature limit, we have p2; p3 → pF correspond-
ing to E� ¼ ϵ2=6μ and α� ¼ 5π=3; see Eq. (6). We account
for the deviations of p2, p3, p0

2, and p0
3 from pF and

of p0
1 from p1 at finite temperature in the leading order

in small parameters ϱ ¼ ðE − E�Þ=E�, σ ¼ α − α�, and
σ0 ¼ α0 − α�. Function (8) is only weakly dependent on ϱ,
which we can therefore neglect, leading to

Θ¼4608πe8μ2

ℏL4ϵ4
ln2

�
ℏvF
wϵ

��
ln2jσ−σ0j
ðσþσ0Þ2 þ ln2jσþσ0j

ðσ−σ0Þ2
�
: ð10Þ

Equation (10) is singular at σ ¼ �σ0, which corresponds to
the nullification of the energy denominators in the initial

expression of the second-order perturbation theory for the
scattering rate (7). For type (b) processes, these singular-
ities lead to a divergent quasiparticle decay rate, which is
defined by omitting the energy difference ðεp0

1
− εpÞ in the

right-hand side of Eq. (2). However, the energy relaxation
rate given by Eqs. (5) and (2) is well defined.
We are now in a position to evaluate the rate of

quasiparticle energy change _ϵ using Eq. (2). Converting
the sum into an integral over the variables P, ϱ, σ, and their
primed versions, we first perform the integrations that
involve the δ functions and then integrate over ϱ. The
remaining integral over σ and σ0 is an antisymmetric
function, and thus nullifies the rate if one approximates
np0

1
by np. Accounting for the leading-order deviation in the

distribution function of p0
1 results in a term proportional to

σ2 − σ02 [22]. In combination with the energy difference in
Eq. (2), which is also proportional to σ2 − σ02, it regularizes
the singularities arising from Eq. (10). For the resulting
relaxation rate, we eventually obtain [22]

1

τb
¼ 64π

5ℏ

�
e2

ℏvF

�
4

ln2
�
ℏvF
wϵ

�
ln2

�
ϵ

T

�
μ3T4

ϵ6
: ð11Þ

Equation (11) is our main result. We now compare it with
the energy relaxation rate due to the competing type (a)
processes [11].
Unlike the processes shown in Fig. 1(b), the ones of

Fig. 1(a) contribute to quasiparticle relaxation even at T ¼ 0.
In this case, the quasiparticle decay rate is well defined
despite the singularities in Eq. (10). It is given by [11]

1

τa
∼
1

ℏ

�
e2

ℏvF

�
4

ln2
�

ℏ
wpF

�
ln2

�
μ

ϵ

�
ϵ2

μ
: ð12Þ

The evaluation of the decay rate at finite temperatures is
plagued by the singularities of Eq. (10). Instead, the
energy relaxation rate (5) can be studied. At T ≫ ϵ2=μ,
the result

1

τa
∼
1

ℏ

�
e2

ℏvF

�
4

ln2
�

ℏ
wpF

�
ln2

�
μ

ϵ

�
T ð13Þ

was found in Ref. [11]. It is worth mentioning that at T ¼ 0,
the energy relaxation rate has the same form as the
quasiparticle decay rate (12), albeit with a different numeri-
cal prefactor [22,23]. A comparison of Eqs. (11)–(13) shows
that the quasiparticles with energies ϵ ≫

ffiffiffiffiffiffi
Tμ

p
decay with

the rate (12), whereas at T ≪ ϵ ≪
ffiffiffiffiffiffi
Tμ

p
, our result (11)

gives the dominant contribution [12]. For unscreened
Coulomb interaction, we conclude that the contribution
(13) is always subdominant.
We now briefly discuss the relaxation of a hole, which

represents the absence of a fermion in the Fermi sea. Because
they propagate at speeds below the Fermi velocity, holes are
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stable excitations at zero temperature. At nonzero temper-
atures, they drift toward the Fermi level as a result of
scattering off other excitations. At ϵh≫T, where ϵh¼μ−εp
denotes the energy of the hole, the corresponding rate of
energy change and the relaxation rate can be obtained from
the expressions analogous to Eqs. (2) and (5). In Eq. (2),
one should properly order the summation indices and replace
the quasiparticle distribution function np, the dispersion εp,
and ϵ, respectively, by the corresponding quantities for holes:
1 − np, −εp, and ϵh. For type (b) processes, the evaluation
parallels the one for particles and results in the relaxation
rate (11), with ϵ replaced by ϵh.
Holes can also relax due to processes that involve

quasiparticles near both Fermi points; see Fig. 3. Since
the left-moving pair has a characteristic momentum
jp3 − p0

3j≲ T=vF, from Eq. (3), we find the energy change
of the hole

Δϵh ¼
p0
1 þ p
2m

ðp0
1 − p1Þ≲min

�
ϵh;

Tμ
ϵh

�
: ð14Þ

At ϵh ≫
ffiffiffiffiffiffi
Tμ

p
, we have Δϵh ≪ ϵh, i.e., the hole loses a

small fraction of its energy in a three-particle collision. For
such deep holes, we can define the rate of energy change _ϵh
and the relaxation rate τ−1h using the approach analogous to
that of Eqs. (2) and (5) for particlelike excitations. The rate
of energy change of a hole is given by [22]

_ϵh ¼ −
1

ℏ

�
e2

ℏvF

�
4

ln2
�

ℏ
wpF

�
T2F

�
p
pF

�
; ð15Þ

where

FðaÞ ¼ 2

π

�
ln
1 − a2

4
þ a ln

1þ a
1 − a

�
2 a2

ð1 − a2Þ3 : ð16Þ

Equation (15) is valid for deep holes, i.e., for ϵh ¼
μ − εp ≫

ffiffiffiffiffiffi
Tμ

p
. In the special case

ffiffiffiffiffiffi
Tμ

p
≪ ϵh ≪ μ corre-

sponding to deep holes near the Fermi level, from Eq. (15),

we find τ−1h ∝ μT2=ϵ2h [12]. This result is consistent with
the corresponding expression given in Ref. [11]. We note
that Eq. (15) was obtained to the leading order in low
temperature, which limits its applicability to p ≫

ffiffiffiffiffiffiffi
mT

p
.

An accurate expression for smaller p is obtained by
multiplying Eq. (15) by 1þmT=p2 [22].
Equation (13) for the energy relaxation rate due to the

processes shown in Fig. 1(a) [11] and our Eq. (11) for
relaxation due to the processes of Fig. 1(b) are applicable
to both particles and holes. In particular, they apply to
shallow holes with energies in the range T ≪ ϵh ≪

ffiffiffiffiffiffi
Tμ

p
[22]. Comparing the obtained results, we find that the
relaxation of deep holes occurs primarily due to processes
shown in Fig. 3. In this case, Eq. (15) gives the dominant
contribution to their rate of energy change. In contrast,
the relaxation of shallow holes with energies in the range
T ≪ ϵh ≪

ffiffiffiffiffiffi
Tμ

p
is controlled by processes shown in

Fig. 1(b). Their relaxation rate is given by Eq. (11) with
ϵ replaced by ϵh, whereas the corresponding rate of energy
change follows from Eq. (5).
In this Letter, we studied quasiparticles with energies

ϵ ≫ T. This condition was important for the applicability
of the approach based on Eq. (2), which assumes that the
initial state of momentum p is not thermally populated.
At ϵ ∼ T, one must account for the effect of the thermal
population of the state p, which can be achieved in a
Boltzmann equation description. An order of magnitude
estimate of the typical relaxation rate of the distribution
function in the latter approach can be obtained by extrapo-
lating the rate (11) to ϵ ∼ T,

1

τb
∼
1

ℏ

�
e2

ℏvF

�
4

ln2
�
ℏvF
wT

�
μ3

T2
: ð17Þ

Unlike most other systems of fermions, in our case, the
relaxation rate increases at lower temperatures. This can be
attributed to the long-range nature of Coulomb interaction,
which results in a singularity of the interaction potential
at zero momentum, and thus enhances scattering at small
momentum transfer [20].
The fact that the relaxation rate (17) increases at T → 0

raises an important question of the applicability of the
picture of fermionic quasiparticles and holes used in
this Letter. Indeed, at sufficiently low temperature, one
may expect to reach the regime where the standard
assumption of ℏ=τb ≪ T is violated. In this case, the
uncertainty of the energy of a typical quasiparticle
δϵ ∼ ℏ=τb is comparable to or larger than the energy itself,
ϵ ∼ T, and the quasiparticles are no longer well defined. In
addition, in systems of weakly interacting spin-1

2
fermions,

the well-known phenomenon of spin-charge separation
[1,24] results in the breakdown of the fermionic quasi-
particle description. As a result, only the excitations
with sufficiently high energies can be treated as quasipar-
ticles [11]. For an excitation with energy ϵ ∼ T in a system

FIG. 3. Dominant scattering mechanism that contributes to
relaxation of a deep hole, i.e., at ϵh ≫

ffiffiffiffiffiffi
Tμ

p
.
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with long-range interactions, the condition of Ref. [11] can
be presented in the form T ≫ pFVðT=vFÞ=ℏ. For Coulomb
interactions, this yields

T ≫ T� ¼ μ
e2

ℏvF
ln
�

ℏ2vF
wpFe2

�
: ð18Þ

Our results are obtained under the assumptions that the
interactions are weak (e2=ℏvF ≪ 1) and the width of the
channel is small (wpF=ℏ ≪ 1). In this case, Eq. (18)
ensures that the condition ℏ=τb ≪ T is also satisfied.
A promising experimental setup to test our results is that

of Ref. [7]. It consists of a grounded quantum wire
connected to two spatially separated electrodes. One
electrode is used to inject the current of the particles within
a band of momenta, whereas the other collects the current
in the same band. In the experiment [7], the collected
current of particlelike excitations was greater than the
injected one. This was interpreted to occur due to relatively
fast relaxation of quasiparticles, creating more excitations
in the energy window of the collected current, which
enabled one to estimate the quasiparticle relaxation rate
[3,11]. For a similar setup with unscreened Coulomb
interactions, we expect the experimentally observed relax-
ation rate to be dramatically enhanced in the energy
window between T and

ffiffiffiffiffiffi
Tμ

p
.

The relaxation rate (11) was derived for pure Coulomb
interaction. The effect of screening of the interaction by a
gate will not modify Eq. (11) in the range of energies
ϵd ≪ ϵ ≪

ffiffiffiffiffiffi
Tμ

p
, where ϵd ¼ ℏvF=d and d is the distance to

the gate. At ϵ ≪ ϵd ≪
ffiffiffiffiffiffi
Tμ

p
, the relaxation rate still rises

with decreasing ϵ as [22]

1

τb
¼ 576π

5ℏ

�
e2

ℏvF

�
4

ln2
�
d
w

�
ln2

�
ϵd
ϵ

�
μ3T4

ϵ2ϵ4d
: ð19Þ

Up to the numerical coefficient and logarithmic factors,
Eq. (19) is consistent with the estimate of Ref. [11]. It is
important to note that the rate of Eq. (19) is much larger
than the rate controlled by the processes of Fig. 1(a).
Therefore, our conclusions do not change qualitatively in
the case of the interaction screened by a gate.
In summary, we have studied the rate of energy relax-

ation for quasiparticles and holes in a weakly interacting
one-dimensional system of fermions with Coulomb repul-
sion. Compared to the case of screened interaction, we have
found that the scattering processes shown in Fig. 1(b) lead
to a dramatic enhancement of the quasiparticle relaxation
rate at low energies, τ−1 ∝ ϵ−6 at T ≪ ϵ ≪

ffiffiffiffiffiffi
Tμ

p
; see

Fig. 2. A similar enhancement also holds for shallow
holes. For deep holes, we have obtained their energy
relaxation at arbitrary momenta; see Eq. (15).
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