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In a closed system, it is well known that the time-reversal symmetry can lead to Kramers degeneracy and
protect nontrivial topological states such as the quantum spin Hall insulator. In this Letter, we address the
issue of whether these effects are stable against coupling to the environment, provided that both the
environment and the coupling to the environment also respect time-reversal symmetry. By employing a
non-Hermitian Hamiltonian with the Langevin noise term and utilizing the non-Hermitian linear response
theory, we show that the spectral functions for Kramers degenerate states can be split by dissipation, and the
backscattering between counterpropagating edge states can be induced by dissipation. The latter leads to
the absence of accurate quantization of conductance in the case of the quantum spin Hall effect. As an
example, we demonstrate this concretely with the Kane-Mele model. Our study can also include interacting
topological phases protected by time-reversal symmetry.
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Time-reversal symmetry (TRS) protected topological
phases, such as the TRS protected topological insulator
(TI) in two and three dimensions, are intriguing states of
matter that have been extensively studied in the past two
decades. Unlike the quantum Hall effect, the topological
classifications of these states require the presence of TRS
[1]. With TRS, the nontrivial topological properties have
been firmly established in a closed system [2,3]. A natural
question is whether the concept of TRS protected topology,
as well as its physical consequences such as quantized
conductance, still holds in the presence of coupling to the
environment. This is certainly a very important issue,
because, for any practical applications of these topological
materials, it is inevitable that the materials should be
coupled to an external environment.
A natural expectation is that protection from TRS is

guaranteed if the Hamiltonian of the system, the envi-
ronment, and the coupling between the environment and
the system all obey TRS. However, this expectation was
recently challenged by McGinley and Cooper [4]. They
show explicitly that the coupling to the environment can
lead to decoherence between two Kramers doublet states
even though the coupling and the environment both obey
TRS. Their argument is deeply rooted in the fact that,
even if an isolated system obeys TRS, its subsystem can
behave as seemingly violating the TRS. Actually, this fact
plays a key role in thermalization of a closed quantum
system. In quantum thermalization, considering a pure
state of a closed system whose evolution equations obey
the TRS, the evolution of its subsystem can undergo an
irreversible process that loses information and reach
thermalization with the rest of the system acting as a
bath [5,6].

Without loss of generality, we consider an open quantum
system coupled to the environment through a pair of
operators Ô and Ô†, and both operators obey TRS but
do not have to be Hermitian. Nevertheless, the entire
Hamiltonian, including the system, the system-environ-
ment coupling, and the environment itself, is Hermitian and
obeys TRS. By treating the degrees of freedom of the
environment with the Markovian approximation, the open
quantum system can be described by a non-Hermitian
Hamiltonian with a Langevin noise term, which ensures the
quantum mechanical commutative relation and preserves
the trace of the density matrix [7]. This non-Hermitian
Hamiltonian can be generally written as

Ĥ ¼ Ĥ0 − iγÔ†Ôþ Ô†ξ̂þ ξ̂†Ô; ð1Þ

where γ is the dissipation strength. Ĥ0 is the Hermitian
Hamiltonian of the system itself, and it also obeys TRS.
Here we should emphasize that Ĥ0 does not have to be a
noninteracting one [7]. ξ̂ is the Langevin noise operators
that satisfy hξ̂ðtÞξ̂†ðt0Þi ¼ 2γδðt − t0Þ and hξ̂†ðtÞξ̂ðt0Þi ¼
hξ̂ðtÞξ̂ðt0Þi ¼ hξ̂†ðtÞξ̂†ðt0Þi ¼ 0. All the calculation done
with this non-Hermitian calculation should be accompanied
by averaging over the Langevin noise term in the end. In
Ref. [12], we have developed a non-Hermitian linear
response theory. This theory starts with the equilibrium
state of Ĥ0 and treats dissipation order by order, which
determines how an equilibrium system responds to weak
dissipation. To implement the non-Hermitian linear
response theory, we should introduce an interaction picture
which separates out the dissipation term from the system
term. For instance, in the interaction picture, we should
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define ÔIðtÞ ¼ eiĤ0tÔe−iĤ0t, and similar definitions for
other operators with upper scribe I.
Summary of results.—We consider generally a pair of

Kramers degenerate eigenstates of Ĥ0, say, jΨi1 and jΨi2.
When we specifically consider a TRS protected TI, they
can be chosen as a pair of degenerate edge states located at
the same edge. We denote the Hilbert space formed by
these two states as HK. In this Letter, by studying
the linear response of the density matrix, the Green’s
function, and the matrix element of a local impurity
potential, respectively, we obtain three main results as
summarized below. (i) Loss of coherence.—Suppose that
initially the quantum state is a pure state in HK as
jΨi ¼ α1jΨ1i þ α2jΨ2i, where αi¼1;2 are two constants
and the initial density matrix is given by ρ̂Kð0Þ ¼ jΨihΨj.
By turning on the dissipation, the quantum state
evolves under Ĥ, and the density matrix becomes ρ̂ðtÞ.
By projecting onto HK space by the projection
operator Π̂K, one can obtain the projected density matrix
ρ̂KðtÞ ¼ 1=N Π̂K ρ̂ðtÞΠ̂K , with normalization factor
N ¼ Tr½Π̂K ρ̂ðtÞΠ̂K�. We define δρ̂KðtÞ ¼ ρ̂KðtÞ − ρ̂Kð0Þ.
We show that δρ̂KðtÞ is not proportional to ρ̂Kð0Þ.
(ii) Break of degeneracy.—With dissipation, the retarded
Green’s function in HK space is a two-by-two matrix G
with the matrix elements defined as

Gij ¼ −iΘðtÞhfĉiðtÞ; ĉ†jð0Þgi; ð2Þ

where ĉi and ĉ†i are annihilation and creation operators,
respectively, corresponding to eigenstates jΨii of Ĥ0 and
ĉiðtÞ ¼ eiĤtĉie−iĤt. We show that Gij is no longer propor-
tional to an identity matrix in theHK space. (iii) Presence
of backscattering.—For a local impurity potential V̂,
we consider the matrix element of this impurity potential
between two Kramers states, i.e., V0

ij ¼ hΨijV̂jΨji.
Suppose, without dissipation, this matrix element is
identically zero for i ≠ j. This can be satisfied, for
instance, when jΨ1i and jΨ2i are, respectively, the
left-moving and the right-moving edge states of a
quantum spin Hall state. With dissipation, we need to
consider

VijðtÞ ¼ hΨijV̂ðtÞjΨji; ð3Þ

where V̂ðtÞ ¼ eiĤtV̂e−iĤt. We show that VijðtÞ ≠ 0

for i ≠ j.
Result (i) naturally leads to SvðtÞ ≠ Svðt ¼ 0Þ, where

SvðtÞ ¼ −Trρ̂KðtÞ log ρ̂KðtÞ is the von Neumann entropy.
That is to say, for t > 0, the entropy becomes nonzero, and
the system loses its phase coherence. This is consistent with
the result presented in Ref. [4]. Results (ii) and (iii) are the
central results of this work. With result (ii), we can further
plot the spectrum function AðωÞ, which shows two split

peaks. This means the lack of Kramers degeneracy for a
non-Hermitian open system even though the coupling to
environment also respects the TRS. Result (iii) is directly
related to the two-dimensional quantum spin Hall.
Quantized conductance is the hallmark of quantum spin
Hall, due to the forbidden backscattering between the left-
and the right-moving edge states. Therefore, the presence
of backscattering means that the conductance of a quantum
spin Hall state is not perfectly quantized. This physics has
been qualitatively discussed in Refs. [4,13]. This is perhaps
one of the reasons that accuracy of quantization observed in
quantum spin Hall samples so far [13–16] is far less than
that observed in quantum Hall samples, in addition to other
possible explanation such as the inelastic scatterings
[14,17,18] and electromagnetic noise-induced scattering
[19]. These results are essentially due to the irreversible
nature of the bath and bear a lot of similarity to the H-
theorem in statistical mechanics. In other words,
these results can be viewed as the manifestations of
the H-theorem in the TRS protected topology. Time-
reversal symmetry can also be spontaneously broken
in the dynamical evolution, as pointed out in recent papers
[20,21].
Application of Schur’s lemma.—Before proceeding into

the details of the derivation, we should emphasize that these
results essentially rely on the TRS being an antiunitary
symmetry. In other words, if the symmetry that protects the
topological phase is a unitary symmetry, the phenomena
(i)–(iii) described above should not occur. Mathematically,
the difference is rooted in the celebrated Schur’s lemma in
the group theory [22]. Schur’s lemma says that, for a
unitary group, if an operator M̂ commutes with all elements
in the group, then this operator, in an irreducible repre-
sentation, has to be proportional to an identity matrix.
Nevertheless, when Schur’s lemma is applied to an anti-
unitary group, not only the operator M̂ has to commute with
all elements in the group, but also the operator M̂ has to be a
Hermitian operator, and then this operator is proportional to
an identity matrix in an irreducible representation [23]. As
we will see below, when the Hermitian condition and
respecting the antiunitary symmetry condition cannot be
satisfied simultaneously, this operator is generally no
longer proportional to identity. This is the key mathematical
reason responsible for the difference between the unitary
symmetry protection and the antiunitary symmetry
protection.
To be more concrete, we will give two examples that will

be used below.
The first example is about Π̂KÔ

IðtÞÔ†;IðtÞΠ̂K . By using
the fact that the states inHK are degenerate states of Ĥ0, we
have Π̂Ke�iĤ0t ¼ e�iĤ0tΠ̂K ¼ e�iE0tΠ̂K, and, therefore,
Π̂KÔ

IðtÞÔ†;IðtÞΠ̂K ¼ Π̂KÔÔ†Π̂K . Note that Π̂KÔÔ†Π̂K
is Hermitian and time-reversal symmetric. It is also
important to note that the Hilbert space HK of
two Kramers degenerate states forms an irreducible
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representation of the TRS; thus, the projection Π̂K
enforces the restriction to an irreducible space of TRS.
Therefore, this term obeys Schur’s lemma, and, conse-
quently, it is proportional to identity. The same holds
for Π̂KÔ

†;IðtÞÔIðtÞΠ̂K.
The second example is about Π̂KÔ

IðtÞΠ̂K and
Π̂KÔ

†;IðtÞΠ̂K . It can also be shown that Π̂KÔ
IðtÞΠ̂K ¼

Π̂KÔΠ̂K. Because Ô is time-reversal symmetric but is
generally not Hermitian, this term does not satisfy Schur’s
lemma for the antiunitary TRS. The same holds for
Π̂KÔ

†;IðtÞΠ̂K . However, for unitary symmetry, because
Schur’s lemma does not require the operator being
Hermitian, all these operators are proportional to identity
in an irreducible space if they obey the unitary symmetry.
Hence, the unitary symmetry protected topological states
are stable against coupling to environment.
Loss of coherence.—Here, we consider density

matrix in the interaction picture ρ̂ðtÞ ¼ ÛðtÞρ̂Kð0ÞÛ†ðtÞ
with ÛðtÞ ¼ eiĤ0te−iĤt, and, by expanding ρ̂ðtÞ to
the leading order of γ and averaging the noise, we can
obtain

ρ̂ðtÞ − ρ̂Kð0Þ ¼ 2γ

Z
t

0

�
−
1

2
fÔ†;Iðt0ÞÔIðt0Þ; ρ̂Kð0Þg

þ ÔIðt0Þρ̂Kð0ÞÔ†;Iðt0Þ
�
dt0; ð4Þ

where the second term results from averaging over the
Langevin noise. By projecting back toHK, the first term in
the rhs in Eq. (4) can be written as

fΠ̂KÔ
Iðt0ÞÔ†;Iðt0ÞΠ̂K; ρ̂Kð0Þg; ð5Þ

and the second term in the rhs in Eq. (4) can be written as

½Π̂KÔ
Iðt0ÞΠ̂K�ρ̂Kð0Þ½Π̂KÔ

†;Iðt0ÞΠ̂K�: ð6Þ

With the two examples discussed above, we can conclude
that Eq. (5) is proportional to ρ̂Kð0Þ but Eq. (6) is not
proportional to ρ̂Kð0Þ. Hence, δρ̂KðtÞ is not proportional to
ρ̂Kð0Þ, and the entropy changes.
Break of degeneracy.—Here, we apply the linear

response theory to the Green’s function defined in
Eq. (2) and consider that the Kramers doublet are both
occupied by a pair of fermions. Similar as the discussion
above, we consider δGij ¼ Gij − Gð0Þ

ij , where

Gð0Þ
ij ¼ −iΘðtÞhfĉIiðtÞ; ĉ†;Ij ð0Þgi ð7Þ

and Gð0Þ
ij is the Green’s function without dissipation. It is

easy to see that Gð0Þ
ij ∝ δij. What we need to show is that

δGij is not proportional to δij. We can also expand δGij to
the leading order of γ. We shall not show the full expression

of this term here [7]. Generally speaking, there are two
types of terms in the leading-order expansion. One kind of
term includes, for instance,

Z
t

0

hĉ†;Ij ð0Þ½Π̂KÔ
†;Iðt1ÞÔIðt1ÞΠ̂K�ĉIiðtÞidt1; ð8Þ

which involves Π̂KÔ
†;Iðt1ÞÔIðt1ÞΠ̂K . The other kind of

term includes, for instance,
Z

t

0

hĉ†;Ij ð0Þ½Π̂KÔ
†;Iðt1ÞΠ̂K�ĉIiðtÞ½Π̂KÔ

Iðt1ÞΠ̂K�idt1; ð9Þ

which involves Π̂KÔ
Iðt1ÞΠ̂K and Π̂KÔ

†;Iðt1ÞΠ̂K . With
the two examples discussed above, we can also see that
the first kind of term is still proportional to δij, but the
second kind of term is not. Hence, up to the leading order of
γ, G is already not an identity matrix, and the spectrum
is split.
Presence of backscattering.—Here, we consider the

matrix element defined in Eq. (3). Similarly, we define
δVij ¼ VijðtÞ − V0

ij, and we expand δVij to the leading
order of γ [7]. Here, as a typical example, we focus on one
of the terms that are similar to the ones discussed above,
which readsZ

t

0

hΨij½Π̂KÔ
†;Iðt1ÞV̂IðtÞÔIðt1ÞΠ̂K�jΨjidt1

¼
Z

t

0

hΨij½Π̂KÔ
†eiĤ0ðt−t1ÞV̂e−iĤ0ðt−t1ÞÔΠ̂K�jΨjidt1:

ð10Þ
Here, we should note a difference between the discussion
here and the two cases above. The above two results can
both be proved within the Kramers degenerate space HK .
However, if in this case we are restricted in the HK space,
VI is an identity matrix that commutes with Ĥ0. Thus,
Eq. (10) becomes

Z
t

0

hΨij½Π̂KÔ
†ÔΠ̂K�jΨjidt1; ð11Þ

where Π̂KÔ
†ÔΠ̂K is Hermitian and obeys TRS.

One can show that this holds for other terms in the
leading-order expansion of δVij. Therefore, restricted in
HK space, it is an identity matrix and cannot induce
backscattering.
Hence, we should consider the V̂ operator out of HK

space, where V̂ is no longer represented as identity and, in
general, does not commute with Ĥ0. Then, it is easy to see
that the operator in the square brackets in Eq. (10) does
not respect TRS, although it is a Hermitian one. Therefore,
this term does not obey Schur’s lemma and is not
proportional to identity. Once not an identity matrix,
nothing guarantees this term to be a diagonal matrix,
and, generically, the off-diagonal matrix elements exist,
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which lead to δVij ≠ 0 for i ≠ j. Similar discussions can
be applied to other terms in the first-order expansion of
δVij. Taking i and j as a pair of degenerate counter-
propagating edge states of a quantum spin Hall, we have
now established the presence of backscattering and the
absence of perfect quantization of conductance.
Example: The Kane-Mele model with dissipation.—

Here, we use the celebrated Kane-Mele model on a
honeycomb lattice for two-dimensional quantum spin
Hall to illustrate these three results more concretely [24].
For this model, we have

Ĥ0 ¼ J
X
hi;ji;s

ĉ†i;sĉj;s þ iλSO
X

⟪i;j⟫;s;s0
νijĉ

†
i;sσ

z
ss0 ĉj;s0

þ iλR
X

hi;ji;s;s0
ĉ†i;sðσ × dijÞzss0 ĉj;s0 þ λν

X
i;s

ξiĉ
†
i;sĉi;s; ð12Þ

where i and j are the site index, s and s0 are the spin index,
and σ are the Pauli matrices. The first term is the nearest-
neighbor hopping with strength J. The second term is a
spin-orbit coupling between second-neighbor hopping,
with νij ¼ �1 and strength λSO. The third term is the
nearest Rashba term with strength λR, where dij is the
vector connecting i and j sites. The last term is a staggered
potential with ξi ¼ �1 for different sublattices and strength
λν. We choose the parameters such that the model is in the
topological nontrivial insulator state. Moreover, the spin-
rotational, the mirror, and the reflectional symmetries are
all explicitly broken such that the degeneracy can come
only from the time-reversal symmetry.
We introduce the coupling operator Ô either defined on

site i as

Ô ¼ i
X
s;s0

ĉ†i;sσ
y
ss0 ĉi;s0 ; Ô† ¼ −i

X
s;s0

ĉ†i;sσ
y
ss0 ĉi;s0 ð13Þ

or defined on a nearest-neighboring link hi; ji as

Ô ¼
X
s

ĉ†i;sĉj;s; Ô† ¼
X
s

ĉ†j;sĉi;s: ð14Þ

It is easy to see that the operators defined above obey TRS
and are not Hermitian. In the numerical simulation, we
include a number of Ô operators defined above located at
the edge of an sample, and the number of coupling
operators is denoted by M. We note that the discussion
above can be generalized straightforwardly to the cases
with more coupling operators.
Here, we numerically diagonalize the Kane-Mele model

on a Nx × Ny sample, with an open boundary condition
along x̂ and a periodical boundary condition along ŷ. Here,
we should emphasize that, in order to obey TRS, the
operators Ô have to be a quadratic fermion operator, and,
therefore, the total Hamiltonian contains four-fermion
terms and cannot be solved by diagonalizing a quadratic

matrix. Therefore, even though the spectrum of Ĥ0 can be
obtained exactly, the effects of dissipation still need to be
computed by the non-Hermitian linear response theory,
and the numerical results are shown in Fig. 1. We take two
edge states of Ĥ0 with the same energy and located
at the same edge as the Kramers degenerate states jΨii
(i ¼ 1, 2). First, starting with an initial pure state
jΨi ¼ 1=

ffiffiffi
2

p jΨ1i þ 1=
ffiffiffi
2

p jΨ2i, we determine the evolution
of the density matrix, with which we compute the time
dependence of the von Neumann SvðtÞ shown in Fig. 1(a).
One can see that the entropy increases linearly in time, with
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FIG. 1. (a) The von Neumann entropy SvðtÞ as a function of
time. Here,M ¼ 20 (solid line), 16 (dashed line), and 12 (dotted-
dashed line), respectively. (b) The spectral function AðωÞ for two
Kramers degenerate states with dissipation, with M ¼ 20. With-
out dissipation, the eigenenergies of these two states are degen-
erate and equal to −0.17J. (c) Time evolution of the matrix
element of the impurity potential V12ðtÞ between two degenerate
edge states with M ¼ 20. The solid line includes contributions
from all states, and the dashed line includes only contributions
from edge states. The dissipation strength γ is taken as 0.2J, and
other parameters in the Kane-Mele model are chosen as
λSO=J ¼ 0.06, λR=J ¼ 0.05, and λν=J ¼ 0.1. The impurity
strength V is taken as V ¼ J. Aside from the inset, the size of
honeycomb lattice is set as Nx ¼ 8 and Ny ¼ 30. The inset shows
the transmission coefficient as a function of Ny with Nx ¼ 8,
where the impurity density is fixed at around 0.05 and the number
of coupling operators is M ¼ Ny.
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a larger slope for larger M. Second, the spectral function
AðωÞ for these two states is shown in Fig. 1(b). One can see
that the peaks of two spectral functions are split. Third, we
compute the backscattering matrix element of an on-site
impurity potential between these two edge states. Here, we
plot the results with contributions from all states, as well as
results with contributions from edge states only, which
show both edge and bulk states contribute to the nonzero
matrix elements. With the backscattering matrix element,
we can also estimate the transmission coefficient [7], and
the system size dependence of the transmission coefficient
is shown in the inset in Fig. 1(c). It shows that the
transmission coefficient can deviate from unity when the
system size is beyond a certain threshold, resulting in a
finite deviation of the conductance from the quan-
tized value.
Remarks.—In summary, we have discussed how a

system responds to dissipations, with TRS imposed on
both the system and the environment, as well as the
coupling operators between them. The main results are
the absence of Kramers degeneracy and the absence of
accurate quantization of conductance for TRS protected TI.
We also recover the results reported in Ref. [4] on losing of
phase coherence. However, different from Ref. [4], we
employ a non-Hermitian Hamiltonian formalism for open
quantum system with the Markovian approximation to the
environment, and the way we impose TRS is also different.
Different from many works on non-Hermitian physics in
the recent literature, our non-Hermitian Hamiltonian con-
tains Langevin noise term to ensure unitarity. In fact, the
above discussions show that the Langevin noise terms play
a crucial role, because most terms violating Schur’s lemma
are essentially from the Langevin noise average. We should
also emphasize that the way we impose the TRS symmetry
leads to quartic non-Hermitian terms. This also makes
our model different from those considered in recent
works on topological classification of the non-Hermitian
Hamiltonian, where the models under consideration are
always quadratic [25,26].
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