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A long-standing mystery of fundamental importance in correlated electron physics is to understand
strange non-Fermi liquid metals that are seen in diverse quantum materials. A striking experimental feature
of these metals is a resistivity that is linear in temperature (T). In this Letter we ask what it takes to obtain
such non-Fermi liquid physics down to zero temperature in a translation invariant metal. If in addition the
full frequency (ω) dependent conductivity satisfies ω=T scaling, we argue that the T-linear resistivity must
come from the intrinsic physics of the low energy fixed point. Combining with earlier arguments that
compressible translation invariant metals are “ersatz Fermi liquids” with an infinite number of emergent
conserved quantities, we obtain powerful and practical conclusions. We show that there is necessarily a
diverging susceptibility for an operator that is odd under inversion and time reversal symmetries, and has
zero crystal momentum. We discuss a few other experimental consequences of our arguments, as well as
potential loopholes, which necessarily imply other exotic phenomena.
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A diverse variety of “strange”metals are seen [1–5] to not
fit the basic predictions of Fermi liquid theory. Examples
include cuprate high temperature superconductors, some
heavy electron materials tuned to a quantum critical points,
and a growing number of other correlated metals (see, e.g.,
Refs. [6–9]) The non-Fermi liquid physics manifests itself
through unconventional power laws that go down to energy
scales much lower than any microscopic scale. A striking
example is a resistivity that increases linearly with temper-
ature over awide range that extends to very low temperature.
There is currently very little understanding of this linear
resistivity and other properties in most experimental sys-
tems.Understanding these strangemetals is widely regarded
as one of the biggest challenges in modern physics.
Here we present a number of general theoretical obser-

vations that provide strong restrictions on the dynamics of a
class of clean strange metals. We expect that this class
includes both the cuprate strange metal as well as non-
Fermi liquid heavy fermion quantum critical metals.
Remarkably we show, under some very general conditions
discussed below, that obtaining a linear resistivity down to
T ¼ 0 in a clean metal requires the divergent susceptibility
of an observable that is odd under inversion and time
reversal, transforms as a vector under lattice rotations, and
has zero crystal momentum. These are the same symmetries
as those of the loop current order parameter [10] discussed
in the cuprate materials. Thus our discussion of strange
metal transport provides a very general reason for a
diverging loop current susceptibility in the strange metal
which may connect to the various reports and controversies
(for a sampling of some representative papers, see
Refs. [11–22]) surrounding such order in the proximate
pseudogap metal.

We consider a putative non-Fermi liquid metal with the
following assumed properties:
1. Clean. The system microscopically has U(1) charge

conservation symmetry and lattice translation symmetry
(no disorder).
2. Conductivity scaling. At low temperatures and

frequencies, the conductivity approaches the universal
scaling form

σðω; TÞ ¼ T−1Σðω=TÞ ð1Þ

for some function Σ, such that Σð0Þ is a nonzero finite
number. In particular, the DC resistivity is proportional
to T.
3. Compressible. The charge ν per unit cell can be

continuously tuned as a function of some microscopic
parameters without affecting the above properties, and is
not pinned to any particular rational value.
These assumptions are strongly motivated by the

observed non-Fermi liquid physics in the cuprates and at
heavy electron quantum critical points. We could perhaps
refer to these assumptions as our “Central Dogmas”
[33,34]. So let us briefly discuss the experimental evidence
for these assumptions.
We begin with the first assumption, whose nontrivial

content is that the observed behavior is a property of a
clean lattice system. Real materials of course have some
level of disorder that breaks lattice translation invariance.
Our assumption then is that to understand the essence of
the strange metal physics including the linear-T resistivity,
the disorder is unimportant. Support for this assumption
comes from studies [35] on cuprates that are artificially
damaged by electron irradiation, which provides a gentle
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way of tuning the disorder strength. It is seen that
such irradiation increases the residual resistivity at zero
temperature but does not change the slope of the linear
resistivity. Moreover, for the cleanest samples the residual
resistivity can be made very small, and generally is much
smaller than the total resistivity in most of the temperature
range where linear resistivity is observed. This suggests
that the residual resistivity is related to disorder while the
physics of linear resistivity is not affected by such
disorder, and that there is a hypothetical perfectly clean
limit in which the residual resistivity goes to zero while
the linear resistivity remains. For heavy fermion quantum
critical metals, some of them like YbRh2Si2 are stoichio-
metric compounds and it is perhaps not unreasonable that
the basic non-Fermi liquid physics is not determined by
disorder effects.
Next we consider the second assumption, of conductivity

scaling. Linear dc resistivity down to ultra-low temperatures
is of course seen in many non-Fermi liquid metals. We note,
however, that our assumption implies the absence of a
residual zero temperature resistivity; as mentioned above, we
expect that in the clean limit, the residual resistivity would
indeed go to zero. The ω=T scaling of the frequency
dependent conductivity has been directly demonstrated
recently [36] in YbRh2Si2. Evidence for such scaling in
the cuprate strange metal regime has long been reported [37],
at least up to ℏω slightly bigger [38] than kBT.
Finally the third assumption—that the metal is com-

pressible—is widely made in the literature though it has not
been scrutinized in detail experimentally. In the cuprates
the hypothesized quantum critical doping associated with
the strange metal occurs at slightly different values in
different materials. This is consistent with assuming that
the critical doping can be continuously tuned by varying
microscopic parameters. It may be possible to demonstrate
this directly by studying the change of critical doping with
pressure in a single cuprate material.
We will obtain some striking theoretical constraints on

metals with these assumed properties, without actually
constructing a specific model of such a metal.
Assumptions 1 and 3 are also shared by conventional
Fermi liquids in clean systems; however, these manifestly
do not satisfy Assumption 2. For example, the dc
conductivity of a clean Fermi liquid scales like σð0; TÞ ∝
T−2 (or faster if umklapp is not effective). Our discussion
builds on the results of Ref. [39] which focused on the
kinematics of compressible translation invariant quantum
phases and phase transitions. A key result is that any such
metallic phase has a very large emergent symmetry and
associated conservation laws. Non-Fermi liquids with
such an emergent symmetry were dubbed “ersatz Fermi
liquids.” Here we focus on the dynamics of such ersatz
Fermi liquids.
Strange metal transport is “intrinsic”.—An important

distinction to make is between “intrinsic” and “extrinsic”

resistivity. It is helpful to use the language of the renorm-
alization group (RG). Quite generally the low-energy
physics of the system is described by some RG fixed
point. The resistivity is intrinsic if this RG fixed point
theory itself has nonzero dc resistivity at nonzero temper-
ature. By contrast, the resistivity is extrinsic if the dc
resistivity of the RG fixed point theory is zero (even at
nonzero temperature); then nonzero resistivity must arise
entirely from RG-irrelevant couplings.
In a conventional clean Fermi liquid, the resistivity is

extrinsic. There the only source of resistivity is umklapp
scattering which is an irrelevant perturbation to the Fermi
liquid fixed point [40]. By contrast, for systems satisfying
Assumption 2, the resistivity must be intrinsic. To see
this, note that the conductivity of the system as a function
of frequency, σðω; TÞ, in general depends on the values
of irrelevant couplings. However, the only way for the
asymptotic behavior at small ω and T to be described by
Eq. (1), is if the right-hand side of Eq. (1) represents the
conductivity of the fixed point theory with irrelevant
terms set to zero; we give a careful proof of this
statement in the Supplemental Material [23]. Since
Assumption 2 then states that Σð0Þ < ∞, it follows that
the dc conductivity of the fixed-point theory is not
infinite. We remark that at first glance Eq. (1) as a
result for an RG fixed-point theory might seem surprising
from the point of view of dimensional analysis. However,
recall that the Fermi liquid fixed point also satisfies
Eq. (1), albeit with the scaling function Σ being a delta
function. The point is that in the RG for the Fermi liquid
fixed point, there is a length scale kF (the Fermi wave
vector) that does not scale in the RG flow.
The emergent symmetries of a strange metal.—Now we

turn to examining the consequences of the assumptions that
the metal is clean, and is compressible (Assumptions 1 and
3). We first recall the result of Ref. [39]. For any system
satisfying Assumptions 1 and 3, the group of emergent
internal symmetries in the IR fixed point theory cannot be a
compact finite-dimensional Lie group. What then could the
emergent internal symmetry group of a strange metal be? A
hint is provided by ordinary Fermi liquids which, since
they satisfy Assumptions 1 and 3 must indeed obey the
constraints of Ref. [39].
A Fermi liquid manages to have a symmetry group that is

not a compact finite-dimensional Lie group because that the
charge at each point on the Fermi surface is separately
conserved. Specifically (in two dimensions, say), any
operator of the form

Z
fðθÞn̂ðθÞdθ ð2Þ

is conserved, for any smooth function fðθÞ, where θ is
some coordinate parametrizing the Fermi surface, and
where n̂ðθÞ is the linear charge density operator with
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respect to θ; thus the total charge of the system is
Q̂ ¼ R

n̂ðθÞdθ, while the momentum can be expressed as

P̂ ¼
Z

kðθÞn̂ðθÞdθ; ð3Þ

where kðθÞ is the momentum of point θ on the Fermi
surface. Therefore, the emergent internal symmetry group
of the Fermi liquid is an infinite-dimensional continuous
group. As explained in Ref. [39] this emergent symmetry is
anomalous. Some (though not all) universal properties of a
Fermi liquid can be understood directly in terms of its
emergent symmetry and the associated anomaly.
It is interesting to postulate that the emergent internal

symmetry and anomaly of the strange metal fixed point is
the same as a Fermi liquid, despite having no quasipar-
ticles. Reference [39] introduced the term ersatz Fermi
liquid to refer to such a system; now we will examine the
very striking consequences of this postulate. In the
Supplemental Material [23], we discuss other possibilities.
Charge transport in ersatz Fermi liquids.—There is a

tension between the strange metal being an ersatz Fermi
liquid and having nonzero resistivity. Any conserved
quantity risks leading to dissipationless current flow if it
has nonzero overlap with the electrical current, since the
conservation law then prevents the current from fully
relaxing.
For simplicity, let us first consider the case of an ersatz

Fermi liquid in two spatial dimensions with continuous
rotational symmetry. In that case, the only conserved
quantities that can overlap with the current are n1 and
n−1 ¼ n†1, where we defined the Fourier components of the
n̂ðθÞ’s: n̂l ¼ ð1=2πÞ R 2π

0 e−ilθn̂ðθÞdθ. These are closely
related to the momentum, since we have kðθÞ ¼
kFðcos θ; sin θÞ which implies from Eq. (3) that Px ¼
πðn̂1 þ n̂−1Þ and Py ¼ πðn̂1 − n̂−1Þ=i. Then [41–43] (see
also the Supplemental Material [23] for an easy argument)
the real part of the frequency-dependent conductivity is
given by

σðωÞ ¼ πQ2

M
δðωÞ þ ðnonsingular partÞ; ð4Þ

where Q is the charge density, and

M ≔
1

V
χPxPx

≔
1

V

� ∂
∂v

�
hPxiH−vPx

jv¼0; ð5Þ

can be interpreted as the “mass density,” where h·iH−vPx

denotes a thermal expectation value with the Hamiltonian
H replaced by H − vPx. The delta function in Eq. (4) leads
to infinite dc conductivity (unless its coefficient is zero).
This is an example of the “momentum bottleneck” for
current relaxation.

Is there any way to suppress the delta function in Eq. (4)
in order to obtain finite dc conductivity? Strange metals are
supposed to exist at finite charge density, so Q ≠ 0.
Therefore, the only way to suppress the delta function is
if M is infinite. Going beyond the assumption of continu-
ous rotational symmetry, and for any spatial dimension, we
show in the Supplemental Material [23] that it remains the
case that the only way to suppress the delta function in the
conductivity at zero frequency for an ersatz Fermi liquid,
assuming generic charge density (Assumption 3), is for a
certain susceptibility of the n̂ðθÞ’s to diverge. Therefore, we
have reached one of the principal conclusions of our Letter:
Assumptions 1–3, if satisfied by way of the system being
an ersatz Fermi liquid, imply the divergence of a suscep-
tibility of the emergent conserved quantities.
Note that, as defined by Eq. (5),M is the suceptibility of

a quantity P̂x that is odd under time-reversal and inversion
symmetry. In fact, in the Supplemental Material [23] we
show that even without continuous rotation symmetry, and
in any spatial dimension, the operator for which the
divergent susceptibility suppresses the delta function in
Eq. (4) must share the same symmetry properties as the
electrical current operator. Thus, it is odd under time-
reversal symmetry and inversion symmetry, while under
lattice rotation symmetry, it transforms as a vector. This
suggests that the divergent susceptibility could potentially
be a signature of a continuous phase transition into a phase
that (among other features) spontaneously breaks inversion
and time-reversal symmetry, a point we return to later.
Finally, note that at any T > 0 the susceptibility will

probably be finite, while the emergent conservation laws
will be violated by irrelevant operators. The role of these
effects on charge transport at T > 0 is discussed in the
Supplemental Material [23].
We next describe a number of experimental tests of the

idea that the strange metal is an ersatz Fermi liquid.
Experimental test: Crossover to off-critical resistivity

and scaling.—One signature is the scaling of resistivity in
cases where the strange metal occurs at a quantum critical
point proximate to a Landau Fermi liquid. Then, away from
criticality, M in Eq. (4) will become finite, thereby
reactivating the mechanism of conserved quantities pre-
venting current decay. The conductivity will be dominated
at low frequencies and temperatures by the delta function
peak in Eq. (4) (which can get broadened with width ∝ T2

due to momentum relaxation from irrelevant couplings).
But since the weight of this peak precisely goes to zero at
the critical point, where the conductivity must instead have
a different origin, we should not expect the conductivity at
low temperatures and frequencies near the critical point to
collapse onto a universal scaling curve. By contrast, if one
of the loopholes discussed in the Supplemental Material
[23] applies, and the strange metal is not an ersatz Fermi
liquid, then it is conceivable that such a scaling collapse
could occur. This conclusion will hold irrespective of the
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nature of the detailed crossover from the ersatz Fermi liquid
quantum critical fixed point to the ordinary Fermi liquid.
It is sometimes observed that in the proximate

Fermi liquid near a strange metal quantum critical
point, the resistivity ρðTÞ − ρð0Þ ¼ AT2 with A diverging
upon approaching the critical point [44] while the critical
point itself shows linear resistivity. For an ersatz Fermi
liquid, the diverging A coefficient should not be part of a
scaling function with the linear resistivity. Such a scaling
has been attempted in heavy electron systems (Ref. [47]);
our discussion calls for careful scrutiny of this scaling plot.
It would also be very interesting to determine how exactly
the ac conductivity crosses over from the “broad” peak of
width ∼T in the strange metal [see Eq. (1)] to the much
narrower Drude peak in the Fermi liquid.
Experimental test: Inversion or time reversal breaking

order.—We argued—on general grounds—that if the
strange metal is an ersatz Fermi liquid (or a variant) then
it is necessary that a susceptibility of the emergent con-
served n̂ðθÞ must diverge in order to obtain the required
resistivity. For this to work, the susceptibility must diverge
in channels that have overlap with the current operator.
Thus the low energy theory has observables O which are
time reversal or inversion odd, live at zero crystal momen-
tum, transforms as a vector under lattice rotations, and
whose susceptibility diverges. This is a firm prediction of
the ersatz Fermi liquid hypothesis for strange metals that
could potentially be tested.
In the cuprates, there have been many reports (and

controversies) of ordering that spontaneously breaks pre-
cisely the symmetries of such observables O (see, e.g.,
Refs. [11–17,19–22]). These have been usually interpreted
microscopically in terms of loop current ordering.
Remarkably, our considerations, which come from a
completely different line of thought, demand the existence
of critically diverging fluctuations of such order in the
strange metal regime. This may be consistent with the
emergence of static order in the pseudogap ground state.
However we caution that the pseudogap ground state is not
just an ordinary Fermi liquid metal in the presence of such
order. Rather on top of whatever transformation underlies
the evolution between the overdoped and underdoped
metallic ground states (e.g., a Fermi surface jump), our
considerations make it plausible that there is a breaking of
time reversal and inversion symmetries. Furthermore the
diverging susceptibility of an order parameter at a quantum
critical points does not necessarily imply that one of the
proximate phases has static order for the corresponding
observable, as is known from a number of theoretical
examples.
Experimental test: Quantum oscillations.—Another

experimental test that one could consider in principle,
although in practice it may be difficult to realize, is based
on quantum oscillations. Consider any system in two
spatial dimensions with lattice translation symmetry and

U(1) charge conservation symmetry, and let ν be the
average charge per unit cell. Then we say the system
exhibits universal quantum oscillations if, upon applying a
weak magnetic field B, the properties of the system (for
example, resistivity) are periodic in 1=B with period

Δð1=BÞ ¼ e
2πℏ

1

ρ
; ð6Þ

where ρ is some number (the “effective charge density”)
such that ρVunit ¼ ν½mod 1�, where Vunit is the volume of
the unit cell. (For spinful systems, there is an additional
factor of 2 in this relation).
Quantum oscillations were originally derived for Fermi

liquids, based on a semiclassical quantization argument for
the orbits of quasiparticles. However, in fact one expects
quantum oscillations for any system where the discrete
microscopic translation symmetry gets extended to an
emergent continuous symmetry [39,48], as happens, for
example, for an ersatz Fermi liquid in which the Fermi
surface does not wrap nontrivially around the Brillouin
zone. We expect, moreover, that the converse also holds, so
that universal quantum oscillations can be considered an
experimental signature of the microscopic translation
symmetry getting extended to an emergent continuous
symmetry. When this occurs, then by a similar argument
to the ersatz Fermi liquid case discussed above but, we
emphasize, without needing to assume the system is an
ersatz Fermi liquid, then the only way to get intrinsic
resistivity would be to have a diverging “mass density,”
corresponding to a diverging susceptibility.
Unfortunately, for hole-doped cuprate materials that are

clean enough that one can expect to observe quantum
oscillations, the critical magnetic field required to suppress
superconductivity down to zero temperature at critical
doping is larger than is accessible with current technology;
for example, it is estimated that the critical field is about
150 T in YBCO [49]. Meanwhile, at heavy fermion critical
points, a magnetic field tunes the system out of criticality,
again complicating a direct determination of the possibility
of quantum oscillations associated with the quantum
critical state. Therefore, it has not been possible to verify
whether the zero-temperature quantum critical point that is
believed to control a strange metal exhibits quantum
oscillations. However, hopefully this might be possible
in the future.
We remark that electron-doped cuprates exhibit T-linear

resistivity in a range of dopings [50,51] (see Refs. [52,53]
for reviews); quantum oscillations have been reported for
some of these materials [54] but not in the same doping
range as the T-linear resistivity. This seems worthy of
further study.
Loopholes.—The results presented here have very impor-

tant theoretical and experimental implications for strange
metals, as we have described. Therefore, one should think
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carefully about whether there might be any potential
loopholes. Of course, one possibility would be that our
Assumptions 1–3 are not satisfied, although we have
described the experimental basis to believe that they are.
Beyond that, all the loopholes that we can think of would be
extremely exotic. One possibility would be that the
emergent internal symmetry group is not a compact
finite-dimensional Lie group. Another would be a scenario
that we call “ultralocal quantum criticality” (which is a
stronger condition than what is often referred to as “local
quantum criticality”). We discuss these loopholes further in
the Supplemental Material [23].
Conclusion.—In this work, we have unveiled a powerful

new approach to understanding strange metals. Rather than
trying to find theoretical models that can reproduce the
phenomenology, which has so far eluded the community,
we are able to make considerable progress through general
structural arguments based only on minimal assumptions.
Through such an approach, we have made strong model-
independent predictions about the nature of strange metals.
We expect that our results will narrow down the search for a
theoretical understanding of these mysterious and fascinat-
ing phases of matter.
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