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Direct correlation functions (DCFs), linked to the second functional derivative of the free energy with
respect to the one-particle density, play a fundamental role in a statistical mechanics description of matter.
This holds, in particular, for the ordered phases: DCFs contain information about the local structure
including defects and encode the thermodynamic properties of crystalline solids; they open a route to the
elastic constants beyond low temperature expansions. Via a demanding numerical approach, we have
explicitly calculated for the first time the DCF of a solid: based on the fundamental measure concept, we
provide results for the DCF of a hard sphere crystal. We demonstrate that this function differs at coexistence
significantly from its liquid counterpart—both in shape as well as in its order of magnitude—because it is
dominated by vacancies. We provide evidence that the traditional use of liquid DCFs in functional Taylor
expansions of the free energy is conceptually wrong and show that the emergent elastic constants are in
good agreement with simulation-based results.
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Introduction.—In classical and quantum theories of
many-body systems, two-point correlation functions or
propagators play a very important role. In homogeneous
systems, they describe the fundamental structural correla-
tions; they can be interpreted as the probability of finding
two particles at two different points (in general, these are
points in space and time). In functional formulations of
many-body theory, these two-point functions are generically
related to functional derivatives of a generating functional
with respect to two local source terms. In classical systems in
equilibrium [1], the generating functional may be taken as
the grand potential Ω and the source term is the local
chemical potential defined by ψðrÞ ¼ βμ − βVextðrÞ, where
β ¼ 1=ðkTÞ is the inverse temperature, μ is the bulk
chemical potential, and VextðrÞ is an external potential
acting on particles at space point r. The corresponding
second derivative−βδ2Ω=½δψðr1Þδψðr2Þ� ¼ Gðr1; r2Þ is the
total pair correlation function.Upon a Legendre transform to
a free energyF ½ρðrÞ�with the one-particle density ρðrÞ as its
natural source term variable, another correlation function
may be defined by βδ2F=½δρðr1Þδρðr2Þ� ¼ Cðr1; r2Þ.
Cðr1; r2Þ ¼ Cidðr1; r2Þ − cðr1; r2Þ is commonly split into
a trivial ideal gas part [Cidðr1; r2Þ ¼ δðr1 − r2Þ=ρðr1Þ] and
an excess part, the latter of which is called the direct
correlation function (DCF). This function is more funda-
mental thanG, in the sense thatGmay be built by a sequence
of theDCFs through the (inhomogeneous)Ornstein-Zernike

relation. Knowing cðr1; r2Þ for the stable phases or aggre-
gate states of classical systems thus entails knowing the
structural order of these phases and constitutes a desirable
scientific asset. In past decades, the total pair and direct
correlations of simple and complex liquids have been
studied in detail and qualitative and quantitative aspects
of them are known [2]. In contrast, this is not the case for the
crystalline state, whose ordered nature is frequently only
characterized by the periodicity in ρðrÞ [which is the first
derivative −βδΩ=δψðrÞ]. Here, we aim to close this knowl-
edge gap on the DCF and demonstrate that the shape of a
crystal DCF is very different from a liquid DCF and, in
particular, is divergent in the limit of an ideal, defect-free
crystal. Furthermore, we analyze (generalized) elastic con-
stants, viz. thermodynamic derivatives with respect to
density and strain, in terms of the crystal DCF and show
that this function encodes the mechanical properties.
Basic concepts.—From density functional theory, the

appropriate functional expansion of the excess part (over
ideal gas) of the free energy around a reference bulk state
with density ρ0 is given by [1]

F ex½ρ� ¼ Fexðρ0Þ þ
Z

dr μexðr; ρ0ÞΔρðrÞ

−
1

2β

Z
dr1

Z
dr2 cðr1; r2; ρ0ÞΔρðr1ÞΔρðr2Þ

þ � � � : ð1Þ
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Here, Fexðρ0Þ is the excess part of the free energy of the
reference state. For a liquid, ρ0 is constant and μex is the
constant excess chemical potential, while for a crystal, ρ0
and μex are lattice periodic functions. cðr1; r2; ρ0Þ is the
DCF of the reference state. In many theoretical works, the
classical solid is considered as a perturbation of the
homogeneous liquid. In Eq. (1) this amounts to approxi-
mate cðr1; r2; ρ0Þ ≈ cliqðjr1 − r2j; ρ0Þ with the translation
invariant DCF of the liquid. Minimizations of such a
liquidlike free energy functional can qualitatively (e.g.,
hard sphere systems [3]) and, for some systems, also
quantitatively (e.g., soft systems [4–6]) describe crystals
with a periodic ρðrÞ; the underlying assertion is, however,
that the crystal DCF is liquidlike.
Earlier fundamental considerations [7] cast doubts on

this approach but actual evaluations of the crystal DCF
were restricted to a harmonic model.
For a density distribution ρðrÞwith lattice periodicity, the

Fourier modes are discrete, nonzero only for reciprocal
lattice vectors (RLVs) g. The corresponding crystal DCF
ccrðr1; r2Þ is invariant with respect to a global translation by
a lattice vector L, i.e., ccrðr1 þL; r2 þLÞ ¼ ccrðr1; r2Þ.
We can define center of mass and relative coordinates by
s12 ¼ γr1 þ γ0r2 and r12 ¼ r1 − r2 [here, γ ¼ ð1 − γ0Þ is
arbitrary]. Thus the crystal DCF possesses an expansion
[7,8]

ccrðr1; r2Þ ¼
X
g

Z
dk

ð2πÞ3 e
ig·s12eik·r12 c̃crg ðkÞ; ð2Þ

which defines the RLV modes c̃crg ðkÞ of the DCF, where
c̃crg¼0ðkÞ is the Fourier transform of a translationally
invariant cðjr1 − r2j; ρ0Þ. Equation (1) with cðr1; r2Þ ≈
cliqðjr1 − r2jÞ fails fundamentally in considering exclu-
sively this term. Later work [9] pointed out the importance
of nonliquidlike parts in the DCF to explain the occurrence
of liquid-fcc vs liquid-bcc transitions. The nonliquidlike
parts in a restricted expansion have been evaluated using
liquid-state methods [10].
There are further arguments showing that the approxi-

mation of crystal DCFs by their liquid counterparts should
be considered conceptually wrong. The functional defini-
tion of C entails that Cðr1; r2Þ ¼ δψðr1Þ=δρðr2Þ and
describes the change in chemical potential at one point
upon change of density at another point. Solids of particles
with repulsive cores usually have very few vacancies (their
relative concentration nvac ∼ 10−4). It can be shown that for
a bulk solid of hard spheres ψðrÞ ¼ βμ ∝ − ln nvac [11];
i.e., ψ diverges for an ideal, defect-free crystal. A local
change in density of the crystal should mainly be affected
through a change in nvac and thus we expect the value of the
DCF OðccrÞ ∼ 1=nvac ≈ 104, about 2 orders of magnitude
larger than the DCF of the hard sphere liquid. Moreover,
according to Eq. (1), changes in free energy upon small

density changes in the solid through deformations should
be describable with just the crystal DCF at the reference
point. This entails a relationship of all the elastic constants
to ccr. Therefore, the correct nature of the crystalline DCF
should also be reflected in measurable quantities.
Direct correlation function from fundamental-measure

theory.—Below we analyze the crystal DCF of hard spheres
with a density functional from fundamental-measure theory
(FMT), currently the most accurate density-functional
theory available. The so-called dimensional crossover route
of derivation of these FMT functionals [12] entails that the
free energy of highly localized density profiles is exact.
This is crucial for the description of crystals where the
density is sharply peaked at lattice sites.
In FMT, the excess free energy is described by a local

functional in a set of weighted densities (labeled by α),
nαðrÞ ¼

R
dr1 ρðr − r1Þwαðr1Þ with wαðrÞ being a corre-

sponding weight function, defined by geometrical charac-
teristics of the particles [13]

βF ex½ρ� ¼
Z

drΦ½nαðrÞ�: ð3Þ

Here we use the White-Bear-II (WBII) tensorial version
[14,15] for Φ (the full definition is given in the
Supplemental Material [16]). Crystal density distributions,
the equation of state of both liquid and crystal, and,
consequently, the coexistence densities of the liquid and
solid are in excellent agreement with simulations [11]. We
expect that different variants of FMT functionals that share
the correct description of single, localized density peaks
could also be used for the present investigation [24,25]. The
full minimization in FMT is a two-step process: at a given
bulk density, one fixes the average number of particles in
the unit cell and minimizes with respect to the density
profile under this constraint. In a second step, one mini-
mizes with respect to the average number of particles in the
unit cell (i.e., with respect to nvac). Coexistence is
determined via the Maxwell construction, and thus
one finds the WBII melting point with η ¼ 0.545 and
nvac ¼ 2.18 × 10−5; see [11] for details. The crystal DCF
follows from the second functional derivative of F ex with
respect to ρ

ccrðr1; r2Þ ¼ −
X
αβ

Z
dr

∂2ΦðrÞ
∂nα∂nβ wαðr − r1Þwβðr − r2Þ;

ð4Þ

which can most conveniently be analyzed in reciprocal
space [16]. We determine ccr by two different ways, on the
one hand, from the RLV expansion of a fcc lattice and, on
the other hand (as a cross-check), via brute force six-
dimensional Fourier transformation, both at the WBII
melting point.

PHYSICAL REVIEW LETTERS 127, 085501 (2021)

085501-2



Results are shown in Fig. 1. Figure 1(a) shows
ccrð0;ΔrÞ, where the first point (origin) is a lattice point
and Δr points in h111i direction of the fcc cubic unit cell.
The number n of RLV shells considered (see the legend)
demonstrates the slow convergence of the RLV expansion
(we used up to n ¼ 104 RLV shells) toward the result
obtained from the brute force Fourier transform (FT). The
translationally invariant RLV mode c̃crg¼0ðn ¼ 0Þ describes
the direct correlations with the center-of-mass variable
averaged over the unit cell. It has a similar shape as the
fluid DCF but is more than a factor 500 larger [note
the separate axis scale for the fluid DCF in Fig. 1(a)]. The
shape of the full result is, however, very different from the
fluid DCF. Figure 1(b) shows ccrð0;ΔrÞ using the RLV
expansion and the brute force FT in the directions of h100i,
h110i, and h111i. These results demonstrate that the DCF is
fairly isotropic around a lattice point. In contrast, the
isotropy is lost if an interstitial point is chosen as the first
point; see Fig. 1(c), which shows ccrðr1; r1 þ ΔrÞ in the
three directions with r1 ¼ ½ða=4Þ; ða=4Þ; ða=4Þ� (a is the
side length of the cubic unit cell). Overall, the order of
magnitude for OðccrÞ ∼ 104 agrees very well with the
estimate 1=nvac from above, and the 3D spatial dependence
is very different from a liquid DCF.
It would be of interest to test the FMT predictions by

inversion of the inhomogeneous Ornstein-Zernike (OZ)
equation [1] using simulation generated results for the total
pair correlation function Gðr1; r2Þ. Yet, this approach faces
serious numerical pitfalls: simulation results are affected by
limited statistics, data for Gðr1; r2Þ are available up to
distances where this function still shows pronounced
oscillations, and the convolution in the OZ equation has
to be carried out in full three dimensions.
Elastic constants.—The calculation of macroscopic

properties of a crystal from first principles requires a
correct description of the microscopic structure. Having
done the first step, we can explore the ramifications of the
discussed DCF properties for the elastic constants (we call
this the DCF route to elastic constants). This has been done

so far by using the fluid DCF only [27–30]. The familiar
elastic constants are defined through an expansion of the
free energy FðηÞ of a strained crystal to second order in the
Lagrangian strain tensor ηαβ ¼ ðuαβ þ uβα þ uγαuγβÞ=2,
where uαβ is the usual gradient of the displacement field
(uαβ ¼ ∇βuα) and like indices are summed over [31]

FðηÞ
V

≈
Fð0Þ
V

− p ηαβδαβ þ
1

2
Cαβγδ ηαβηγδ: ð5Þ

Here, V is the volume of the unstrained equilibrium
reference state with pressure p and the number of particles
is fixed. For a fcc crystal, there are only three independent
elastic constants which in Voigt notation are C11 ¼ Cαααα,
C12 ¼ Cααββ, C44 ¼ Cαβαβ (no summation and α ≠ β).
Since a free energy change to second order in strain is
equivalent to a change in second order in the density profile
[see Eq. (1)], the elastic constants should be expressible
with just the density profile and the DCF at the reference
state. For the change in density δρðrÞ upon applying a
linear displacement field uðrÞ and a change in average
density δρ̄ðrÞ, one may write [32]

δρðrÞ ≈ −uðrÞ ·∇ρðrÞ þ ρðrÞ δρ̄ðrÞ
ρ̄

: ð6Þ

While the density profile ρðrÞ varies rapidly on the length
scale of the lattice spacing, the coarse-grained displacement
and average density field only exhibit smooth variations.
This ansatz corresponds to an affine deformation of the
crystal density profile. The change in average density ρ̄ is
the sum of two effects: the change in vacancy concentration
(or occupancy of the unit cell) and the change of the unit
cell volume [33,34]. Using this affine approximation, the
second-order change in total free energy can be decom-
posed (see Refs. [8,35])

(a) (b) (c)

FIG. 1. Direct correlation function ccrðr1; r2Þ from FMT as function of distance (with σ the sphere diameter) in a hard sphere fcc
crystal at the melting density (η ¼ 0.545, nvac ¼ 2.18 × 10−5). (a) ccr in the RLVexpansion up to 104 shells; Δr is started from a lattice
site. The black solid line is from the brute force FT and the red dotted line is the fluid DCF [26] at η ¼ 0.545 with scale on the right side.
(b) ccrð0;ΔrÞ in three directions by the brute force FT (solid line) and RLVexpansion up to 104 shells (dots). (c) ccrðr1; r1 þ ΔrÞ with
distance measured from the interstitial point r1 ¼ ½ða=4Þ; ða=4Þ; ða=4Þ� and a the side length of the cubic unit cell, lines are as in (b).

PHYSICAL REVIEW LETTERS 127, 085501 (2021)

085501-3



ΔF ð2Þ ¼ 1

2β

Z
dr1

Z
dr2

�
δðr1 − r2Þ
ρðr1Þ

− ccrðr1; r2Þ
�

× δρðr1Þδρðr2Þ

¼ 1

2

Z
dr

�
λαβγδuγαuδβ − 2μαβ

δρ̄

ρ̄
uβα þ ν

�
δρ̄

ρ̄

�
2
�
:

ð7Þ

This defines the generalized elastic constants as thermo-
dynamic derivatives

λαβγδ ¼
1

2
Î½∇αρðr1Þ∇βρðr2Þ ccrðr1; r2Þr12;γr12;δ�;

μαβ ¼ Î½ρðr1Þ∇αρðr2Þccrðr1; r2Þr12;β�;

ν ¼ Î

�
ρðr1Þ

�
δðr12Þ
ρðr2Þ

− ccrðr1; r2Þ
�
ρðr2Þ

�
; ð8Þ

with the integral operator Î ¼ ð1=VβÞ∬ dr1 dr2 and r12 ¼
r1 − r2 with Cartesian components r12;α. According to
Eq. (6), these generalized elastic constants have the
following meaning: the λ’s are the constants sensitive to
a second-order density profile variation due to a combina-
tion of “strain-strain,” the μ’s accordingly are sensitive to
“strain-average density change,” and ν is sensitive to the
combination “average density change–average density
change.” It follows that for a defect-free crystal
(nvac → 0) some of the generalized coefficients must
become very large, since in such a case an independent
variation of strain or average density would always be
accompanied with a creation of interstitials whose free
energy cost is large [36].
The standard elastic constants in Voigt notation are a

suitable combination of the generalized constants reflecting
the process of stressing the crystal without the constraint of
fixed density (see the Supplemental Material [16]),

C11 ¼ λxxxx þ 2μxx þ νþ p;

C12 ¼ 2λxyxy − λxxyy þ 2μxx þ ν − p;

C44 ¼ λxxyy þ p; ð9Þ

with p as the pressure. Note that Eq. (9) also requires one to
pass from linear to Lagrange strain [31] and that the volume
of the integration in Eq. (7) differs from the volume of the
reference state used in Eq. (5).
The computation of the (generalized) elastic constants

using the RLV modes of the FMT functional is described in
the Supplemental Material [16]. Their dependence on the
vacancy density can be studied through employing a crystal
density profile at fixed nvac and subsequently computing
the DCF and the integrals of Eq. (8). The constrained
crystal density profile is obtained by the first step of the
two-step minimization procedure with a fixed number of
particles in the unit cell [11]. In Fig. 2(a), the generalized
elastic constants are shown for different nvac at coexistence
(η ¼ 0.545). Except for λxxyy, these are ∝ 1=nvac in agree-
ment with our reasoning above. λxxyy is comparably small
and insensitive to changes in nvac. As it describes the
response to shear strains that do not generate defects, i.e.,
do not create interstitials, this result also agrees with our
expectation. Note that an evaluation of the generalized
elastic constants by using a liquidlike DCF in Eq. (8) gives
results almost independent on vacancy concentration; see
the dotted lines in Fig. 2(a). Clearly, a fluid DCF quali-
tatively fails to describe the thermodynamic derivatives
approaching the ideal crystal limit.
Interestingly, the Voigt elastic constants from the DCF

route [Eq. (9), see Fig. 2(b)] remain almost unchanged for
nvac up to 10−2, as a result of a delicate cancellation
between the generalized elastic constants, which vary from
104 to 102. The insensitivity of the elastic constants to local
defects explains why previous calculations of the Voigt
constants using a liquidlike DCF gave qualitatively

(a) (b)

FIG. 2. DCF route to elastic constants: (a) generalized elastic constants and (b) Voigt elastic constants at coexistence (η ¼ 0.545) as a
function of vacancy concentration. Symbols connected with full lines are results from Eqs. (8) and (9), and dotted lines use Eqs. (8) and
(9) with ccrðr1; r2Þ → cliqðjr1 − r2j; η0Þ, the fluid DCF [26] at η0 ¼ 0.545; “eq” with the arrow indicates the equilibrium nvac.
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reasonable behavior. Yet, quantitatively, the liquid DCF
gives values off by a factor of 2; see the dotted lines in
Fig. 2(b).
Additionally, we compare the Voigt elastic constants

from the DCF route with the ones obtained by an explicit
free energy determination of suitably deformed unit cells
and using Eq. (5). For the choice of deformations, we
follow the procedure proposed in Ref. [37] (see the
Supplemental Material [16] for details) and perform a free
minimization of the free energy without resorting to density
profile parametrizations. In view of the high accuracy of the
free energy for equilibrium crystals [11], this should
constitute a reliable benchmark. In Table I, results from
the DCF route and from explicit deformations in FMT are
shown and compared with simulations [36] at the melting
point. Note that the particular linear combinations of elastic
constants in Table I distinguish between a compression
mode (volume change) of the fcc crystal, viz. the bulk
modulus 1

3
C11 þ 2

3
C12, and two modes with no volume

change through C11 − C12 (expansion in one Cartesian
direction and compression in another) and C44 (shear).
For all constants, values at least 2 orders of magnitude

smaller than the defect-dominated strain derivatives are
found, and results obtained from the FMT functionals by
the two different routes are rather consistent with the
simulation data. Differences are largest for the bulk
modulus, which apparently changes most during the non-
affine relaxation of the free energy; see the Supplemental
Material [16] for an explicit calculation. The differences
between the two routes point to necessary corrections to the
affine approximation of the density profile change in
Eq. (6), which is currently under investigation.
Outlook.—In this Letter, we have investigated the direct

correlation function of the hard sphere solid using state-of-
the-art density functionals of FMT type. The crystal DCF is
fundamentally different from the one of the hard sphere
liquid as density changes require local defects, viz. vacan-
cies, in solids that are close to ideal. The order of magnitude
of the DCF is thus proportional to the inverse vacancy
concentration. Generalized elastic constants may be
defined in terms of the DCF and the crystal density profile
and show the proportionality to the inverse vacancy
concentration. Liquidlike DCFs do not entail this property.
Standard elastic constants are determined by the

deformation of the lattice, while defects can adjust to the
strain. Thus these constants take finite values, also in the
limit of an ideal crystal. The sensitivity of the generalized
elastic constants to defect concentrations suggests the need
for a closer look at defect-rich systems in the future such as
polydisperse hard spheres (where interstitials will dominate
over vacancies [38]), systems of colloidal cubes [39], or
interpolating systems to defect-dominated cluster crystals
[4]. We anticipate that the generalized constants play a role
for solids with impurities and are relevant to mechano-
chemical coupling in such systems [40].
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