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We theoretically reveal the link between two types of self-acceleration mechanisms widely emerging in
wave dynamics and experimentally demonstrate such a connection via pulse interactions in nonlinear
optical fibers. We find that, in order to realize a pulse pair subjected to a diametric drive acceleration, one of
the two components can be directly obtained from a self-accelerating Airy-like pulse under appropriate
conditions. Such a form of synchronized acceleration cannot be achieved by approaches previously used to
generate diametric drive acceleration. Our results generalize the fundamental concept of diametric drive
acceleration and may bring about unconventional approaches to control self-accelerating waves.
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It is common knowledge that acceleration originates
from an applied external force. A notable exception is an
Airy wave packet undergoing a self-accelerating propaga-
tion in the absence of an external potential. Discovered
initially in the realm of quantum mechanics [1], self-
accelerating Airy waves were later revealed ubiquitously
in various physical systems of wave dynamics [2–12]. In
particular, self-accelerating optical waves [2,3] have
received a great amount of attention, mainly triggered by
their peculiar characteristics and potential applications [4]
such as in optical manipulation [13,14], imaging, and
microscopy [15–17], as well as nonlinear optics [18–22].
In principle, the intrinsic acceleration is associated with a
semi-infinite structure of the wave profiles, consisting of an
intense main lobe and numerous auxiliary sublobes. The
energy stored in the sublobes continuously flows toward
the main lobe region, leading to the main lobe acceleration.
This mechanism extends to nonlinear self-accelerating
wave packets [18,23,24], also featuring semi-infinite
profiles.
Well before the discovery of Airy wave packets, another

kind of self-accelerating behavior, named “runaway
motion,” was proposed in general relativity [25].
Essentially, it describes a counterintuitive movement of
two mutually interacting objects with opposite mass signs,
where an object with negative inertial mass would be
expected to accelerate in the opposite direction to an
exerted force: As a consequence, one object chases the
other, but meanwhile the other tends to escape. Without
resorting to any external force, they can jointly accelerate

solely via their mutual interactions, arousing many in-
triguing ideas toward fuel-free propulsion [26] or the
interpretation of mysterious cosmological phenomena
[27]. Such captivating dynamics were recently introduced
in optics, by realizing coacceleration of two optical pulses
(typically a soliton pulse and a dispersive pulse) driven by
their nonlinear interactions [28,29]. This so-called diamet-
ric drive acceleration was also actively pursued in the
optical spatial domain [30–33] as well as in Bose-Einstein
condensates [34].
Although the two different kinds of self-acceleration

mentioned above have been investigated in the past, their
connection, to the best of our knowledge, has never been
explored. In this Letter, we propose and demonstrate
unified self-acceleration in the context of pulse interaction
in nonlinear optical fibers. We find that, in order to
generate a pair of pulses subject to diametric drive
acceleration, the dispersive pulse can be obtained from
an Airy-like profile through truncation. Our analytical
prediction is directly verified by experimental observa-
tion, realizing the coacceleration of a truncated Airy pulse
and a soliton pulse. We emphasize that, here, we do not
propose yet another demonstration of diametric drive
acceleration, but rather we develop a scheme that general-
izes the concept of wave acceleration, paving the
way to novel and unexplored applications of self-
accelerating waves.
To design an optical diametric drive acceleration in

optical fibers, two coupled nonlinear Schrödinger equa-
tions are required [28]:
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i
∂A
∂z ¼ β2A

2

∂2A
∂τ2 − fAðjAj2; jBj2ÞA

i
∂B
∂z ¼ β2B

2

∂2B
∂τ2 − fBðjAj2; jBj2ÞB; ð1Þ

where A and B are the electric field envelopes of two pulses
representing the soliton and the dispersive pulse, respec-
tively, z is the propagation distance, τ is time in the retarded
frame, β2A (β2B) is the anomalous (normal) group-velocity
dispersion coefficient, and fA;BðjAj2; jBj2Þ represents the
nonlinear term. It is worth noting that Eq. (1) has similar
forms in other physical systems [34]. Specifically, in the
model studied here, fAðjAj2; jBj2Þ ¼ γAðjAj2 þ 2jBj2Þ and
fBðjAj2; jBj2Þ ¼ γBðjBj2 þ 2jAj2Þ, where the coefficients
γA and γB indicate the nonlinear strength, while the first and
second terms in the nonlinear functions describe self-phase
modulation (SPM) and cross-phase modulation (XPM)
[35], respectively. In the analysis that follows, we adopt
the same fiber parameters used in our experimental setting:
β2A ¼ −1.3 × 10−3 ps2 · m−1, β2B ¼ 1.2 × 10−3 ps2 · m−1,
and γA ¼ γB ¼ 0.5 × 10−3 W−1 · m−1. Under these
conditions, the pulse A (B) experiences a self-focusing
(-defocusing) nonlinearity. In the absence of pulse A, pulse
B can be endowed with self-acceleration solely via the Airy
mechanism [2,18]. The resulting nonlinear accelerating
mode shows a similar profile to the linear Airy counterpart
[Fig. 1(a)], relying on its semi-infinite profile to guarantee a
persistent acceleration [18]. Once a truncation is imposed
on the Airy wave packet [i.e., by letting Bðτ > 0Þ ¼ 0], the
truncated Airy wave accelerates only for a limited range of
distances [Fig. 1(b)]. Now, we add pulse A (shaped as a
hyperbolic-secant soliton) to replace the removed sublobes
[Fig. 1(c)]. Because of XPM, we expect that the soliton is

attracted by the truncated Airy-like pulse, which, on the
other hand, is repelled by the soliton. This is due to the fact
that the two pulses have opposite dispersions, akin to
opposite masses in a diametric drive acceleration [28,29].
Provided that the nonlinearly induced acceleration properly
matches the Airy-like acceleration (characterized by g), the
two pulses experience a runaway motion [Fig. 1(c)], as
described by the following equations:

�
AðτÞ

���� ∂fA∂τ
����AðτÞ

�
¼ − gIA

β2A
;

�
BðτÞ

���� ∂fB∂τ
����BðτÞ

�
¼ − gIB

β2B
; ð2Þ

where IA and IB are the soliton and dispersive pulse
energies, respectively, while the left term accounts for
the “force” reciprocally experienced by each pulse. Using
Eq. (2), we readily determine the soliton with the desired
peak power and temporal location (see Supplemental
Material [36]). A detailed comparison between the three
evolutions in Figs. 1(a)–1(c) is further performed by
placing the Airy-like pulses in the accelerating reference
frame (defined by s ¼ τ − gz2=2). When examining
the input and output temporal profiles as shown in
Figs. 1(d)–1(f), one can clearly see that the soliton
effectively replaces the truncated part of the Airy-like
solution, thus maintaining the acceleration. When the
soliton is not present, a finite-energy Airy-like pulse always
experiences decay due to the truncation and, thus, cannot
preserve a long dispersion-free propagation (see more
simulations in Supplemental Material [36]).
To form a coaccelerating pair via our proposed scheme,

overlapping between the two pulses is required. However,
the ensuing XPM may actually reshape the truncated Airy-
like pulse due to the fact that the sublobes eliminated in the
truncation cannot be exactly replaced by the soliton, con-
sequently unbalancing the relationship between the force
and the target acceleration in Eq. (2). To quantify this effect,
the temporal deflection of the truncated Airy-like pulse
subjected to a diametric drive acceleration is compared with
the ideal case (i.e., δτ ¼ gz2=2). For this purpose, we define
the parameter Δ ¼ ðδ0τ − δτÞ=jδτj × 100%, where δ0τ is the
numerically calculated temporal change of the pulse “cent-
roid” (i.e.,

Rþ∞−∞ jBj2τdτ= Rþ∞−∞ jBj2dτ) at a certain propaga-
tion distance. The values of Δ for Airy-like pulses with
different parameters, at the output after a 4-km-long propa-
gation, are presented in Fig. 2. The detrimental influence of
the XPM term can be reduced by employing an intense peak
power (characterized by PB) or a sufficiently large number
(defined by n) of pulse lobes.
In order to relate the interaction force with the target

acceleration, different truncated Airy-like pulses can be
paired with solitons featuring different parameters.
Following Newton’s third law, the energies of the two

FIG. 1. Numerical evolution of a nonlinear Airy-like pulse
under three different initial conditions: (a) without and (b),(c)
with truncation of the sublobes. In (c), a pairing soliton pulse is
also injected. (d)–(f) Input and output profiles of the Airy-like
pulse corresponding to (a)–(c), in an accelerating reference frame.
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pulses satisfy the relation ðgIA=γAβ2AÞ ¼ −ðgIB=γBβ2BÞ
that is readily obtained from Eq. (2), hence showing a
proportional relationship. Thus, for truncated Airy-like
pulses featuring higher energies (obtained, i.e., by increas-
ing either the peak power or the lobe number), one can
deduce that the pairing soliton has a narrower temporal
width (a parameter inversely proportional to the soliton
energy [35]). Consequently, the overlapping region of the
two pulses tends to be shorter at high pulse energies, thus
weakening the adverse effect coming from XPM. To verify
this, the force distribution applied on the truncated Airy-
like pulse, which acquires the form of jBj2ð∂fB=∂τÞ, is
analyzed at the input by calculating its full width at half
maximum to characterize the effective interaction range. As
expected, this range decreases as the peak power or the
number of lobes in the truncated Airy-like pulse
increases (Fig. 2).
To corroborate the validity of the proposed scheme, we

further carry out experiments using the setup schematically
illustrated in Fig. 3(a). A dispersion-shifted fiber (DSF,
4 km long) with the zero-dispersion wavelength at
1547.7 nm is employed for pulse propagation. The pairing
soliton and the Airy-like pulses are obtained by reshaping a
femtosecond pulse featuring a broadband spectrum
[Fig. 3(b)] via a programmable pulse shaper [Fig. 3(c)].
Their center wavelengths are selected to be 1561 and
1536 nm, not only to impart a self-focusing and -defocus-
ing nonlinear evolution, respectively, but also to prompt the
same group velocity (in order to avoid walk-off effects).
Additionally, a linear phase is applied to the spectrum of the
Airy-like pulse in order to adjust the delay between the two
pulses. Before injection into the fiber, the pulse powers are
properly amplified by an erbium-doped fiber amplifier
(EDFA). At the fiber output, an optical spectrum analyzer
(OSA) and a frequency-resolved optical gating (FROG)
system are employed to measure the spectral and the
temporal profiles, respectively.
Since other optical effects are routinely present in fibers,

we consider in our model also the third-order dispersion
(TOD) and the linear loss (characterized by β3 and α,
respectively) so as to provide a better reproduction of the

experimental pulse evolution in simulations. In this case,
the coupled propagating equations are modified as

i
∂A
∂z ¼ β2A

2

∂2A
∂τ2 þ i

β3
6

∂3A
∂τ3 − γAðjAj2 þ 2jBj2ÞAþ iα

2
A

i
∂B
∂z ¼ β2B

2

∂2B
∂τ2 þ i

β3
6

∂3B
∂τ3 − γBðjBj2 þ 2jAj2ÞBþ iα

2
B:

ð3Þ

Dispersion terms of orders higher than TOD as well as
higher-order nonlinear effects can be neglected by employ-
ing input pulses of large duration. In our fiber, β3 ¼ 1 ×
10−4 ps3 · m−1 and α ¼ 0.33 dB=km, representing the
small influence exerted by both TOD and loss. In the first
demonstration, we use a truncated Airy-like pulse with n ¼
3 and PB ¼ 2.3 W. In simulation, this pulse exhibits an
expected acceleration when paired with the designed
soliton, even in the presence of both TOD and loss
[Fig. 4(a)], while its spectrum shows a quasilinear redshift
[Fig. 4(b)]. In contrast, the soliton tends to move to a
shorter wavelength. Although the TOD can help an Airy-
like pulse propagating alone to be resistant to dispersion
[37], our scheme featuring soliton control is more advanta-
geous in terms of keeping dispersion-free evolutions (see
more simulations in Supplemental Material [36]). In our
experiment, the input pulses are generated based on
the simulations. After a nonlinear interaction in the fiber,
the two pulses nearly preserve their original profiles at the
output [Fig. 4(c)], with some slight changes in pulse width
that are mainly caused by loss of power. Note that, for a
better comparison with the numerical results, the measured
outputs have been artificially imposed with a temporal
offset that cannot be measured with our FROG technique.
Looking at the spectral domain, the two pulses undergo
inverted frequency shifts [Fig. 4(d)], which represents a
distinctive experimental signature of their coacceleration

FIG. 2. Characterization on the acceleration deviation of a
truncated Airy-like pulse when paired with a soliton and the
temporal range at which the two pulses overlap for different
(a) peak powers and (b) lobe numbers in the truncated Airy-like
pulse. In (a), n ¼ 8; in (b), PB ¼ 4.

FIG. 3. (a) Experimental setup; (b) spectrum of the laser source;
(c) typical spectral amplitude and wrapped phase modulations
uploaded in the pulse shaper for generating the target pulses.
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during nonlinear propagation. Based on the good agree-
ment between numerical and experimental results, we can
conclude that the acceleration of the truncated Airy-like
pulse is maintained via the mechanism of diametric drive
acceleration. It should be pointed out that, when the pairing
soliton is absent, the truncated pulse can no longer preserve
its shape, and, instead, it becomes much wider under a self-
defocusing nonlinearity [Fig. 4(e)]. Meanwhile, its output
spectrum [Fig. 4(f)] nearly resides at the original position,
experiencing a broadening caused by SPM. Furthermore,
when we attempt to include more lobes for the Airy-like
pulse, we find that the generation and detection of complex
pulses become more difficult mainly due to the limited
resolution of both pulse shaper and FROG.
By trimming off all the sublobes of the Airy-like pulse,

so as to leave the main lobe only, the diametric drive
acceleration studied here reduces to the conventional case
where the dispersive pulse has only one peak. Next, we
compare our approach with that reported in Ref. [28] for
designing the single-peak dispersive pulse. The main
difference is that the dispersion is considered in our
scheme, in contrast to the approach in Ref. [28]. As such,
the pulse acceleration realized in that early method exhibits
an evident deviation from the desired spatiotemporal path

[Fig. 5(a)]. A detailed characterization (by the coefficient Δ
as defined before) of the acceleration deviation is presented
in Fig. 5(b). One can notice that the diametric drive pair
designed by neglecting the dispersion always shows a
larger acceleration with respect to the desired behavior,
even at high pulse energies where the value of Δ for our
case approaches zero. We further investigate, experimen-
tally, the difference between the two methods. Without loss
of generality, we fix the peak power of the soliton pulse to
be 19.5 W. First, we realize the diametric drive acceleration
via our approach. A good agreement with the simulation
based on Eq. (3) is shown in Figs. 5(c) and 5(d), and similar
features in terms of pulse shape preservation and inverted
frequency shifts are observed as in the case in Fig. 4.
Second, while keeping the other conditions unchanged, the
dispersive pulse is replaced by the one engineered without
considering the dispersion. In this latter case, both spectra
for the paired pulses undergo a larger shift [Fig. 5(e)], given
that the actual pulse propagation experiences a larger
acceleration compared with our case.
In conclusion, we have analytically proposed and exper-

imentally demonstrated the connection between two types
of widely studied optical wave acceleration, the Airy-like
acceleration and the diametric drive acceleration, using
nonlinear fiber optics as our test bench. We found that one

FIG. 4. Experimental and numerical results of a diametric drive
acceleration involving a truncated Airy-like pulse with three
lobes and a soliton pulse. (a),(b) Simulations depicting (a) the
temporal evolution of the Airy-like pulse extracted from the
jointly accelerating pair (whose designed spatiotemporal path is
plotted by the dash-dotted line) and (b) the related spectral
evolution of both pulses. (c),(d) Measured (solid lines) and
numerically calculated (dotted lines) input and output (c) temporal
profiles and (d) spectra for the diametric drive acceleration. (e),(f)
The same as (c),(d), for the case where the truncated Airy-like
pulse propagates alone. Note that all results in each panel are
presented in a normalized form.

FIG. 5. Comparison between diametric drive accelerations
realized via the conventional method (case I) and our approach
(case II). (a) Temporal evolutions (upper panel) of the dispersive
pulses (whose inputs are shown in the bottom panel) extracted
from the paired propagations and expected along the path plotted
by the dash-dotted lines; (b) numerical pulse acceleration devia-
tions for different soliton peak powers. Note that both TOD and
loss are not considered in (a) and (b). (c)–(e) Measurements (solid
lines) and corresponding numerical simulations (dotted lines) of
the input and output temporal (c) and spectral (d),(e) profiles of
the paired pulses in cases II (c),(d) and I (e). The vertical arrows in
(e) mark the spectral peak locations of the outputs in (d).

PHYSICAL REVIEW LETTERS 127, 083901 (2021)

083901-4



component of a diametrically driving pair can be directly
obtained from a truncated Airy-like wave packet, and this
finding is more evident at the high-energy regime for the
paired pulses. Our results generalize the concept of
diametric drive acceleration and, even more importantly,
bring about a more precise way to control wave accel-
eration in general. Besides the optical applications pro-
posed with the conventional diametric drive acceleration
[28,29], there are some operations unique to our approach,
where the number of lobes in the Airy-like pulse can be
properly controlled. For instance, Airy-like pulses with
different numbers of lobes may be employed as different
symbols to encode information, which can provide alter-
native coding schemes (different from binary coding; see
Ref. [38]) for transmitting information with enhanced data-
carrying capacity. Beyond the field of optics, our approach
can be directly extended to the systems governed by the
nonlinear Schrödinger equation where dispersions with
opposite signs coexist, such as in acoustic and water waves
[39,40]. Furthermore, for the systems described by the
Dirac equation, our results may trigger the investigation of
unifying self-accelerating waves [41] and the runaway
motion [25]. This unification not only is of fundamental
interest, but may also bring about new possibilities to
control the wave dynamics in various Dirac materials [42].
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