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When a nucleus in an atom undergoes a collision, there is a small probability of an electron being excited
inelastically as a result of the Migdal effect. In this Letter, we present the first complete derivation of the
Migdal effect from dark matter-nucleus scattering in semiconductors, which also accounts for multiphonon
production. The rate of the Migdal effect can be expressed in terms of the energy loss function of the
material, which we calculate with density functional theory methods. Because of the smaller gap for
electron excitations, we find that the rate for the Migdal effect is much higher in semiconductors than in
atomic targets. Accounting for the Migdal effect in semiconductors can therefore significantly improve the
sensitivity of experiments such as DAMIC, SENSEI, and SuperCDMS to sub-GeV dark matter.
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Introduction.—Direct detection of nuclear recoils from
sub-GeV dark matter (DM) is challenging because the
typical energy deposited in an elastic nuclear recoil scales
as EN ∼m2

χv2χ=mN , which is exceedingly difficult to detect
for lighter dark matter candidates. Furthermore, low-energy
nuclear recoils do not deposit much energy in the form of
charge (electrons) or scintillation light, which are the
primary detection channels in many experiments. These
considerations are drivers for new technologies and experi-
ments capable of lower thresholds and phonon-based
detection [1,2].
In the meantime, existing experiments can significantly

extend their reach by searching for inelastic scattering
processes during which additional excitations are created,
e.g., ionization electrons [3], photons [4], or plasmons
[5,6]. While there is generally a rate penalty for such
processes, there are two key advantages: (i) the unfavorable
energy relation in the previous paragraph can be broken and
(ii) the additional excitation gives rise to charge signals that
are more readily detected.
The Migdal effect [7,8] describes inelastic collisions

where atoms are excited or ionized during the initial hard
nuclear recoil. For mχ ≳ 70 MeV, this process takes place
on timescales much shorter than the time for the recoiling
nucleus to travel a distance comparable to the interatomic
spacing. It can therefore be factorized from secondary
ionizations that can occur as the recoiling nucleus interacts
with surrounding atoms, as described by Lindhard’s theory

[9]. As we will show, in crystals the underlying physics of
the primary (Migdal) and secondary (Lindhard) ionizations
are closely related but take place on different timescales.
So far, the Migdal effect and other inelastic processes

have primarily been studied in atomic targets. As applied to
dark matter direct detection, the most complete derivation
of the Migdal effect can be found in Ref. [3], while
additional discussion can be found in Refs. [10–18]. The
effect has been applied to set strong experimental limits in
noble liquid targets [17–20]. Charge thresholds in
low-threshold semiconductor experiments are even lower
[21–23], which makes them even better suited to exploit the
Migdal effect. However, inelastic processes are less well-
studied in crystal targets, in part due to the more compli-
cated spectrum of excitations. Moreover, the existing
calculation for atomic targets [3] relies on boosting the
system to the rest frame of the recoiling nucleus. While
convenient for atomic calculations, this method breaks
down for semiconductors, as the rest frame of the crystal is
a preferred frame. So far, Refs. [15–17] have presented
estimates of the Migdal effect in solid state targets, but as of
now a fully robust, first principles derivation is still lacking.
In this Letter, we show that the Migdal effect in semi-

conductors can be described by the 2 → 3 process of DM-
nucleus scattering in association with a nucleus-electron
Coulomb interaction. Furthermore, the details of the
electronic band structure can be packaged into the well-
studied energy loss function Imð−1=ϵÞ, where ϵ is the
dielectric function of the material. When the energy
deposited into electronic excitations is close to the plasma
frequency, plasmons are resonantly excited. (A plasmon
resonance can be thought of as a collective electron
excitation or as a longitudinal in-medium photon mode.)
A first calculation of the rate for inelastic DM-nucleus
scattering with associated plasmon production was

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW LETTERS 127, 081805 (2021)

0031-9007=21=127(8)=081805(6) 081805-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.127.081805&domain=pdf&date_stamp=2021-08-20
https://doi.org/10.1103/PhysRevLett.127.081805
https://doi.org/10.1103/PhysRevLett.127.081805
https://doi.org/10.1103/PhysRevLett.127.081805
https://doi.org/10.1103/PhysRevLett.127.081805
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


presented in Ref. [6]. By directly calculating the nonreso-
nant contributions, we show that plasmon production is
simply the resonant component of the Migdal effect.
We will begin with a general description of the process in

semiconductors and lay out the assumptions in our calcu-
lation. We present our main results of the Migdal rate in
semiconductors and then clarify its relation to the atomic
Migdal effect. Finally, we present sensitivity estimates for
experiments using Si and Ge targets. Detailed calculations
are provided in the Supplemental Material (SM) [24].
Description of process.—For an elastic recoil off a free

nucleus of mass mN , the typical momentum deposited
by sub-GeV DM is qN ≈mχvχ ≈MeV × ðmχ=GeVÞ,
and the typical recoil energy is EN ≈m2

χv2χ=mN≈
35 eV × ðmχ=GeVÞ2, taking the example of an Si target.
For sub-GeV DM, the energy and momentum scales are
then comparable to various scales inherent to the crystal.
Some care is therefore needed with respect to the regime of
validity of our approximations.
Concretely, in a typical crystal, each nucleus sits in an

approximately harmonic potential with size of ∼Å and
frequency ω̄ ≈ 30–50 meV (see Fig. 1). We will deal with
mχ ≫ 10 MeV such that the inverse momentum transfer
1=qN ≪ Å. Then we can consider the interaction of the
DM with a single nucleus, the so-called “incoherent
approximation” [25]. We will thus compute DM scattering
off a nucleus in the ground state of the potential with
associated nucleus-electron interaction.
To treat the excited states of the nucleus, we will rely on

the “impulse approximation,” which is valid if the collision
happens quickly relative to the timescale set by the
potential well 1=ω̄. (See, e.g., [33].) The initial DM-
nucleus collision and the emission of the Migdal electrons
take place on the timescale ∼1=EN , during which the
nucleus remains near the minimum of the potential well
(see Fig. 1). Only at a much later time, 1=ω̄, does the
nucleus reach the edge of the unit cell and lose its residual
kinetic energy to phonons or become unbound, depending
on the initial collision energy. The impulse approximation

thus allows us to model the excited states as plane waves for
the duration of the hard collision [34]. In the SM, we show
this by calculating the all-orders multiphonon response of a
harmonic crystal and find that the approximation holds if
the momentum transfer satisfies qN ≳ ffiffiffiffiffiffiffiffiffiffiffiffiffi

2mNω̄
p

. For
DM with the standard velocity profile, this implies
mχ ≳ 70 MeV. The incoherent approximation is then
satisfied automatically as well. In practice, we will apply
a set of cuts to exclude regions of the phase space where the
approximations start to break down.
In this discussion, we have focused on the DM momen-

tum transfer to the nucleus qN because the momentum
deposited in electrons will be much smaller. The Migdal
rate then factorizes as follows:

dσion
dENdω

≈
dσel
dEN

dPðENÞ
dω

; ð1Þ

where ω is the energy deposited into electronic excitations,
dσel=dEN is the elastic DM-nucleus cross section, and
dPðENÞ=dω is the differential ionization probability. This
is identical to the expansion made in the bremsstrahlung of
a soft photon from a heavy charged particle, and we refer to
it as the “soft limit.” The soft limit holds as long as jqN ·
kj ≪ mNω and k ≪ qN . Estimating qN ∼ vmχ and
k ∼ 1–10 keV, this translates to 50 MeV≲mχ ≲ 1 GeV
and ω≳ eV, which covers the most relevant parameter
space. While our formal result does not rely on the soft
limit, it is a useful technical and conceptual simplification
when performing the phase space integrals and is valid
whenever the impulse approximation holds.
Finally, we will treat the nuclei and tightly bound core

electrons together as a particle with charge Zion and only
consider excitations of the valence electrons. In other
words, we assume an ion potential that behaves as
Zione=r for large r compared to the wave functions of
the inner shell electrons. To account for the effective ion
charge at shorter distances, we include a momentum-
dependent ZionðkÞ in the Fourier-transformed potential,
which we obtain using tabulated ionic form factors [35].
While the electron-ion momentum exchange will be
≲10 keV such that the long-range behavior of the potential
is most important, including ZionðkÞ leads to Oð1Þ rate
increases.
Calculation.—The Migdal rate is given by the leading

order expansion in both the DM-nucleus and the electro-
magnetic interactions, analogous to bremsstrahlung. We
assume a contact interaction between the DM and the nuclei
given by the Hamiltonian Hχ ¼ð2πbχ=mχÞδðrχ−rNÞ
for mχ ≪ mN, with bχ the DM-nucleus scattering length
and rχ , rN the position operators for the DM and nucleus.
(The DM-nucleus elastic cross section is therefore given
by σN ¼ 4πb2χ ¼ A2σn, with A and σn being, respectively,
the atomic mass number and the DM-nucleon elastic
cross section.) The electron-nucleus interaction is

FIG. 1. We compute DM scattering off a nucleus in a harmonic
crystal using the impulse approximation, which is valid when the
timescale of the initial collision (t0) is short compared to the
timescale to traverse its potential well (t1), set by the phonon
frequency 1=ω̄. This holds for mχ ≳ 70 MeV.
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He ¼
R
d3r0ϵ−1ðr0; r;ωÞZionα=jr0 − rN j, with r the position

operator for the electron. α is the electromagnetic fine
structure constant, and ϵ is the frequency-dependent, micro-
scopic dielectric function that encodes the screening by the
spectator valence electrons.
In a crystal, the linear response depends on both

r0 and r up to the lattice periodicity. The Fourier transform
of the response ϵ−1ðr0; r;ωÞ can then be written as
ϵ−1KK0 ðk;ωÞ≡ ϵ−1ðkþK;kþK0;ωÞ, where k is in the
first Brillouin zone andK;K0 are reciprocal lattice vectors.
ϵ−1KK0 can be regarded as a matrix in the reciprocal lattice
vectors, but for Si and Ge we find the contribution
of the off-diagonal pieces to be subleading. Here, we just
present results assuming a diagonal response matrix ϵ−1KK
and provide the general result in the SM. Including
the momentum-dependent ion charge, He can then be
written as

He ¼ −4πα
X
K

Z
d3k
ð2πÞ3

ZionðjkþKjÞeiðr−rNÞ·ðkþKÞ

ϵKKðk;ωÞjkþKj2 : ð2Þ

We can apply Fermi’s golden rule with second-order
perturbation theory to compute the cross section for DM-
nucleus inelastic scattering. We take the initial ions to be in
a ground state of a harmonic crystal potential. Following
the impulse approximation, we use plane waves for the
intermediate and final states. Meanwhile, the electron states
are treated as Bloch states. Though the computation itself is
a straightforward application of second-order perturbation
theory, the formulas and derivation are somewhat lengthy
due to the appearance of the reciprocal lattice vectors
and a form factor for the recoiling ion. We refer the reader
to the SM for further details and only present the final
result here:

dσ
dω

¼ 2π2A2σn
m2

χvχ

Z
d3qN

ð2πÞ3
Z

d3pf

ð2πÞ3 δðEi − Ef − ω − ENÞ × Fðpi − pf − qN − k −KÞ2 ×
X
K

Z
d3k
ð2πÞ3

4αZ2
ionðjkþKjÞ

jϵKKðk;ωÞj2

×

�
1

ω − qN · ðkþKÞ=mN
−
1

ω

�
24π2α

V

X
pe

j½pe þ kjeir·Kjpe�Ωj2
jkþKj2 ½fðpeÞ − fðpe þ kÞ�δðωpeþk − ωpe

− ωÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Im½ϵKKðk;ωÞ�

; ð3Þ

where qN and pf are the final ion and DM momentum,
respectively, and kþK is the momentum deposited to the
electrons. In the first part of Eq. (3), we see the same factors
and phase space integral that appear for elastic DM-nucleus
scattering except for the additional energy ω being depos-
ited in electronic excitation. While for free nucleus scatter-
ing there would be a momentum conservation delta
function, here we have a form factor F that encodes the
details of the ion ground state, and, for a harmonic crystal,
this is given by

Fðpi − pf − qÞ≡
�

4π

mNω̄

�
3=4

e½ð−jpi−pf−qj2Þ=ð2mN ω̄Þ�; ð4Þ

where ω̄ is an oscillator frequency averaged with respect to
the density of states DðωÞ and the thermal Bose factor. The
remaining pieces of Eq. (3) contain the probability for
exciting the electron. We sum over all initial and final
electron states pe and pe þ k, weighted by the occupation
numbers f, and where band indices have been suppressed.
The electronic wave function overlaps ½pe þ kjeir·Kjpe�Ω
are performed over the unit cell, and V is the volume of the
crystal.
In Eq. (3), the bracketed quantity can be rewritten in

terms of the imaginary part of the dielectric function in the
random phase approximation Im½ϵKKðk;ωÞ�. Then we can
write Im½ϵKKðk;ωÞ�=jϵKKðk;ωÞj2 ¼ Im½−1=ϵKKðk;ωÞ�,

which is the energy loss function (ELF) governing the
energy loss of charged particles in a material. Physically,
the ion-electron interaction in the inelastic process can be
encapsulated in the same ELF as ions passing through a
material. Since the ELF is a well-measured and calculated
quantity in many materials, this provides a useful starting
point for numerical evaluations of Eq. (3).
In the soft limit jkþKj ≪ jqN j, the cross section

factorizes as in Eq. (1), and the form factor F only modifies
the elastic recoil cross section. Then the differential
ionization probability is

dP
dω

¼ ð4παÞ2
ω4

X
pe

Z
d3k
ð2πÞ3 Z

2
ionðkÞ

jvN · kj2
k4

j½pe þ kjpe�Ωj2
Vjϵðk;ωÞj2

× ½fðpeÞ − fðpe þ kÞ�δðωpeþk − ωpe
− ωÞ ð5Þ

¼ 4α

Z
d3k
ð2πÞ3

Z2
ionðkÞ
ω4

jvN · kj2
k2

Im

�
−1

ϵðk;ωÞ
�
; ð6Þ

with vN ≡ qN=mN . This simplified formula is only valid for
k in the first Brillouin zone, while we used the full
expressions used in our numerical results. Equation (6)
was also derived in [6], but that work did not account for
the ion ground state or electron momentum transfers
outside of the first Brillouin zone since it was focused
on long-wavelength plasmons. Furthermore, [6] used an
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analytic approximation for ϵðk;ωÞ near the plasmon pole.
In the results below, we will study the impact of accounting
for the ion ground state and use numerical calculations of
ϵðk;ωÞ that are valid away from the plasmon resonance.
Before doing so, we clarify the relation of this process to
the atomic Migdal effect.
Comparison with atomic Migdal effect.—In Migdal’s

original calculation [7,8] for an atomic target, the ground
state of the electron cloud (jii) is first boosted to the rest

frame of the moving nucleus jii → eimevN ·
P

β
rβ jii. He then

computes the overlap with the excited states hfj:

Mif ¼ hfjeimevN ·
P

β
rβ jii ≈ imehfjvN ·

X
β

rβjii; ð7Þ

where β runs over all the electrons in the atom. The
transition probabilities jMif j2 can then be evaluated with
known atomic wave functions, and it was found that single
ionizations dominate for sub-GeV dark matter [3].
To demonstrate the connection to the semiconductor

Migdal effect derived above, we instead rewrite Eq. (7)
using the following operator identity: hfjPβ rβjii ¼
−ihfjPβ pβjii=meω ¼ ihfjPβ½pβ; H0�jii=meω

2, where
again ω ¼ Ef − Ei is the total energy deposited and H0

the electron Hamiltonian. We assume a nonrelativistic [36]
Hamiltonian such that the H0 is a sum of kinetic terms, the
Coulomb interaction terms between electrons, and the
Coulomb interaction of the electrons with the nucleus.
Then the commutator

P
β½pβ; H0� will be proportional to

the total force from the nucleus since the electron-electron
forces cancel out. Contracting the matrix element with vN ,
we find (see also [37])

hfj
X
β

vN · rβjii ¼
1

meω
2
hfj

X
β

ZNαvN · r̂β
jrβ − rN j2

jii; ð8Þ

with rN the position operator of the nucleus. In the rhs
matrix element above, we see the time derivative of the
dipole potential from a nucleus that has been displaced by
jrN j ≪ jrβj. This is already very similar to the Coulomb
potential in Eq. (2) and suggestive of the same physical
interpretation as in the semiconductor case. One can now
take the Fourier transform and evaluate the transition
probability for single ionizations:

dPðENÞ
dω

≈
�
4πZNα

ω2

�
2X

i;f

����
Z

d3k
ð2πÞ3

vN · k
k2

hfjeik·rjii
����2

× δðEi þ ω − EfÞ; ð9Þ

where we have dropped the e−ik·rN phase factor in the soft
limit. We have thus shown that the atomic Migdal effect has
a form nearly identical to Eq. (5) for semiconductors, up to
a few differences reflecting the different physical systems.

In Eq. (5), the integral over k appears outside the amplitude
squared; this reflects conservation of crystal momentum in
the semiconductor, which requires that the final state have
momentum pe þ k, whereas the atomic states are not
momentum eigenstates. The nucleus charge ZN appears
here since we are considering the all-electron wave func-
tions, whereas in the semiconductor case we effectively
integrated out the core electrons and treated the ion with
effective charge ZionðkÞ. Finally, in Eq. (5), we accounted
for the in-medium dielectric screening 1=jϵðk;ωÞj2
due to all the other electrons, which is neglected in the
atomic case.
With this result, we find an equivalent formulation of the

atomic Migdal effect, Eq. (9), but which has a physical
interpretation that applies also in semiconductors.
Previously, Ref. [38] assumed the atomic formulation in
Eq. (7) could be generalized directly to semiconductors.
However, the boosting argument used to obtain Eq. (7) does
not apply in this case, since in a crystal there is a preferred
coordinate frame. In other words, applying a boost operator
would boost all nuclei in the lattice. Specifically, the two
approaches are not equivalent because the operator relation,
Eq. (8), only applies for an individual atom: in the presence
of a lattice of nuclei, we would have contributions from all
nuclei on the rhs of Eq. (8). Reference [15] attempted to
address this subtlety by using atom-centered localized
Wannier functions in Eq. (7) to mitigate the contribution
from the remaining nuclei in the crystal. For Si and Ge in
particular, the Wannier approach is found, however, to be
computationally challenging due to slow numerical con-
vergence [15].
Between these different starting points, Eq. (9) has a

clear physical interpretation as the in-medium analog of
bremsstrahlung, which nicely generalizes to the semicon-
ductor case. This interpretation is discussed further in the
SM. The final result in semiconductors can moreover be
expressed in terms of the ELF, which can be calculated with
a number of public codes. We therefore argue for this
approach in generalizing the atomic Migdal effect.
Results.—The Migdal rate is given by dR=dω ¼

NTnχ
R
d3vχfðvχÞvχdσ=dω, where NT is number of target

nuclei per kilogram and nχ ¼ ρχ=mχ is the DM number
density. We take ρχ ¼ 0.4 GeV=cm3 and assume the
standard halo model for the DM velocity distribution
fðvÞ with escape velocity vesc ¼ 500 km=s [39,40] and
Earth velocity ve ¼ 240 km=s. We calculate the dielectric
function with the public code GPAW [41–44]. The wave
functions are computed on an 8 × 8 × 8 k-space grid for Si
and a 12 × 12 × 12 grid for Ge. The TB09 exchange-
correlation functional [45] is used and local field effects are
incorporated [46]. A scissor correction is applied to match
on to the experimentally measured band gap in both
materials. We have averaged the ELF over crystal direc-
tions, and for computational reasons, we currently only
include the diagonal components of the loss function,
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although we verified that the off-diagonal terms do not
contribute more than an Oð1Þ amount to the total rate.
Further details, more refined numerical studies, and
other applications will be presented in a forthcoming
publication [47].
The resulting rates and sensitivity estimates are shown in

Fig. 2 for Si and Ge. The bands indicate an estimate of the
theory uncertainty due the breakdown of the impulse
approximation for low energy nuclear recoils. We find
that our calculation starts to break down for mχ ≲ 50 MeV,
at which point one has to go beyond the impulse approxi-
mation by matching onto the phonon regime. The dashed
lines in the right-hand panel indicate the free ion approxi-
mation, where the F form factor is replaced with a δ
function. We find that the free ion approximation is
excellent in the regime where the impulse approximation
applies, further validating the approach in [6]. Compared to
[6], we find, however, significantly stronger sensitivity by
including the contributions away from the plasmon reso-
nance. Most importantly, we confirm that the Migdal rate
for a low threshold detector such as SENSEI, DAMIC, or
SuperCDMS is much higher than in noble liquid detectors.
This is due to the lower ionization gap, the ω−4 scaling in
Eq. (6), and the possibility of detecting all electronic
excitations rather than only atomic ionizations.
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Note added.—In the final stages of preparing this work,
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has some overlap with the calculation in our Supplemental
Material.
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