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For the purpose of analyzing observed phenomena, it has been convenient, and thus far sufficient, to
regard gravity as subject to the deterministic principles of classical physics, with the gravitational field
obeying Newton’s law or Einstein’s equations. Here we treat the gravitational field as a quantum field and
determine the implications of such treatment for experimental observables. We find that falling bodies in
gravity are subject to random fluctuations (“noise”) whose characteristics depend on the quantum state of
the gravitational field. We derive a stochastic equation for the separation of two falling particles. Detection
of this fundamental noise, which may be measurable at gravitational wave detectors, would vindicate the
quantization of gravity, and reveal important properties of its sources.
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Introduction.—The behavior of objects falling freely
under the influence of gravity is commonly described by
Einstein’s general theory of relativity, with the curvature
field treated classically. Individual test particles follow the
geodesic equation while the separations of pairs of test
particles obey the geodesic deviation equation. These are
deterministic equations, befitting the classical theory from
which they are derived. But the fundamental laws of physics
are quantum mechanical and, in the context of gravity, we
expect the spacetime metric to be a quantum field. To take
this into account, a different framework is required.
Here we present a formalism for calculating the effect on

falling bodies due to the quantization of the gravitational
field. We find that the dynamics of the separation of a
pair of falling particles is no longer deterministic, but
probabilistic, being acted on by a novel stochastic force.
Specifically, we find that the separation of the two particles
now obeys a Langevin-like stochastic equation containing a
random fluctuation term, or noise [1] (as is further
discussed in the Supplemental Material [2] and more fully
in Ref. [3]). This provides the quantum generalization of
the classical geodesic deviation equation. Our result applies
also to a single object falling in the gravitational field of a
heavier, fixed mass. Thus, an apple falling in Earth’s
gravity, say, would not fall straight down but would be

subject to minute quantum jitters, which can be regarded
heuristically as arising due to the bombardment of the apple
by gravitons.
This effect is potentially measurable at gravitational

wave detectors. We can model the mirrors of an arm of
a gravitational wave interferometer [4,5] as two freely
falling particles, and couple them to a quantized weak
gravitational field. Then, using our formalism (which is
based on the Feynman-Vernon influence functional), the
effect on the separation of the mirrors can be calculated; the
result is that the mirror separation is subject to quantum-
gravitational noise. Moreover, the unusual power spectrum
of this noise can allow it to be distinguished from many
other sources of noise that gravitational wave interferom-
eters are susceptible to [6]. The statistical properties of the
noise depend on the quantum state of the gravitational field,
and we have calculated it explicitly for several classes of
states. We estimate that the noise is unmeasurably small for
coherent states, which are minimum-uncertainty quantum
states that most closely resemble classical gravitational
waves. However, there are theoretically predicted, though
as yet unobserved phenomena, involving evaporation of
black holes and exotic phases in the early Universe,
wherein quantum aspects of gravitational radiation play
a central role. For the corresponding quantum states, we
find that the noise can be significantly enhanced. In
particular, in squeezed states the noise can be enhanced
exponentially in the squeezing parameter. Detection of this
fundamental noise would provide experimental evidence
for the quantization of gravity. Finally, we also discuss the
connection between features of the radiation sources and
the quantum nature of the radiation field.
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Analysis.—We are interested in how a pair of free-falling
particles responds to a quantized gravitational field (com-
pare Refs. [7–12]). We refer to the pair as a detector since
the two mirrors at the ends of the arm of a gravitational
wave interferometer can be idealized as two free-falling
massive particles in a weak gravitational field. (This
description would hold more literally for a space-based
interferometer.) Suppose that the initial state of the gravi-
tational field is jΨi. We have in mind that this initial state
was created by distant astrophysical sources and therefore
can be regarded as initially unentangled with the detector
state. As the field interacts with the detector, its quantum
state changes because the detector generically both absorbs
and emits gravitons through spontaneous and stimulated
emission; the final field state jfi is a priori unknown. We
would like to know the transition probability for the
detector to go from state jAi to state jBi in time T.
Since we do not measure the final state of the gravitational
field, we must sum over jfi. Thus, we wish to calculate

PΨðA → BÞ ¼
X
jfi

jhf; BjÛðTÞjΨ; Aij2; ð1Þ

where ja; bi≡ jai ⊗ jbi, and Û is the unitary time-
evolution operator for the combined gravitational fieldþ
detector system.
To go further, we need a more detailed description of the

observed degrees of freedom; it is significant to focus on
observables because the natural variables include unphys-
ical gauge dependence. Let the geodesic separation of the
two particles be ξðtÞ. The dynamics of the combined
system of gravity and the two particles is described by
the Einstein-Hilbert action minimally coupled to the actions
of the two nonrelativistic particles. The weakness of the
gravitational field in the radiation zones allows us to
expand the particle-field interaction, which is our main
interest, in the metric perturbation hij. We will also keep up
to quadratic terms in the purely gravitational action. This
truncation neglects gravitational self-interaction. It corre-
sponds to summation of a large class of Feynman graphs, as
indicated in Fig. 1. Then,

S ¼ −
c4

64πG

Z
d4x∂μhij∂μhij

þ
Z

dt
1

2
m0ðδij _ξi _ξj − _hij _ξ

iξjÞ: ð2Þ

In this expression, we are left with only a single degree of
freedom for the two particles: their gauge-invariant sepa-
ration. Thus, our results apply also to the case of a single
particle subject to the gravity of a heavier, fixed mass. We
can now evaluate the amplitudes in Eq. (1) in the path
integral formulation derived from the action in Eq. (2),
where jAi and jBi are the initial and final states of ξ; see
Fig. 1. Thus, we have

PΨðA → BÞ ¼ IA;B

Z
DξDξ0e

i
ℏ

R
dt

m0
2
ð_ξ2−_ξ02ÞFΨ½ξ; ξ0�: ð3Þ

This expression can be understood as follows. The double
path integral reflects the fact that this is a probability, rather
than an amplitude. The factor IA;B contains integrals over
the initial and final wave functions of ξ, and will play no
further role. In the exponent, we recognize the nonrelativ-
istic action for a free particle. Equation (3) gives us an
effective theory for the particle separation ξ, in which the
effects of its coupling to the quantized gravitational field
have been taken into account. Crucially, all the effects of
the quantized gravitational field are formally captured by
the functional FΨ½ξ; ξ0� known as the Feynman-Vernon
influence functional [13–15].
To evaluate the influence functional, we write the

gravitational field state jΨi as a tensor product of single-
mode states: jΨi ¼⊗k⃗ jψ k⃗i. For a weak gravitational field,
linearity allows us to treat the problem mode by mode and
then sum over modes. Then, FΨ½ξ; ξ0� ¼

Q
k⃗ Fψ k⃗

½ξ; ξ0�,
where Fψ k⃗

½ξ; ξ0� is the influence functional for a single
mode of the gravitational field. To compute this, we
decompose the metric perturbation in Fourier modes. Let
the mode of wave number k⃗ have angular frequency ωk⃗ and
amplitude qk⃗ðtÞ. If we now, for simplicity, assume that the
perturbation propagates orthogonally to the line joining the
particles, and if we further restrict to a single polarization,
then we find that the gravitational part of the action in
Eq. (2) for a single mode of the gravitational field is

Sk⃗ξ ¼
Z

dt

�
1

2
mð _q2

k⃗
− ω2

k⃗
q2
k⃗
Þ − g _qk⃗

_ξξ

�
: ð4Þ

Here, g ¼ m0=2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏG=c3

p
is a coupling constant, whilem is

a mass introduced for dimensional reasons; m depends on

FIG. 1. A generic Feynman diagram representing an elemen-
tary process involved in the transition probability in Eq. (1). Solid
lines represent the detector while wiggly ones represent grav-
itons. Notice that, given Eq. (2), the only vertices allowed are
graviton-detector-detector vertices which eliminates the possibil-
ity of pure graviton loops. Moreover, since the detector is
ultimately expected to behave classically, we also disregard pure
detector loops.
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an infrared cutoff scale and will drop out of all physical
expressions after integration over modes.
The model can be made more realistic by including the

other polarization, as well as by properly accounting for
various trigonometric factors that would arise for modes
that are incident from different directions; here we neglect
those complicating refinements to focus on the core
problem.
Notice that the single-mode action in Eq. (4) describes a

simple harmonic oscillator of angular frequencyωk⃗ coupled
to an external source ξ, via a cubic, derivative interaction.We
can readily quantize this simple action to evaluate the
influence functional; the calculation can be performed,
without further invoking perturbation theory, because the
Lagrangian is quadratic in q. The associated quantum

Hamiltonian reads Ĥk⃗
ξ ¼ ðp̂k⃗ þ gξ_ξÞ2=2mþ ð1=2Þmω2

k⃗
q̂2
k⃗
.

Correspondingly, the expression for the single-mode influ-

ence functional is Fψ k⃗
½ξ; ξ0� ¼ hψ k⃗jÛk⃗†

ξ0 ðTÞÛk⃗
ξðTÞjψ k⃗i,

where Ûk⃗
ξ is the unitary time-evolution operator obtained

from Ĥk⃗
ξ . Repeated application of the Baker-Campbell-

Hausdorff formula then yields

Fψ k⃗
½ξ; ξ0� ¼ F0k⃗

½ξ; ξ0�hψ k⃗je−W
�â†eWâjψ k⃗i; ð5Þ

whereW and F0k⃗
½ξ; ξ0� are readily calculated functions of ξ

and ξ0. Equation (5) is useful computationally because the
exponents are expressed in terms of ladder operators â and
â†, whose operation on jψ k⃗i can be calculated for many
classes of states. In particular, Eq. (5) can be evaluated in
closed form for vacuum, coherent, thermal, and squeezed
states.
Having obtained the influence functional for a single

mode of the gravitational field in an initial state jψ k⃗i, we are
now ready to sum over modes to find the total influence
functional of the gravitational field from the product of
single-mode influence functionals. The result will depend
on the quantum state of the gravitational field. As a basic
example, suppose the gravitational field is in its vacuum
state. Performing the mode sum, we find in particular that

ln jFvacj ¼ −
m2

0

32ℏ2

Z
T

0

Z
T

0

dtdt0Aðt − t0Þ

× ½XðtÞ − X0ðtÞ�½Xðt0Þ − X0ðt0Þ�; ð6Þ

where X ¼ d2ðξ2Þ=dt2, X0 ¼ d2ðξ02Þ=dt2, and Aðt − t0Þ is a
known integral. Feynman and Vernon realized that when-
ever ln jFj is quadratic in X − X0, jFj can be rewritten in a
very suggestive manner, as a statistical average over an
auxiliary function NðtÞ:

jFvacj ¼
�
exp

�
i
ℏ

Z
T

0

dt
m0

4
NðtÞ½XðtÞ − X0ðtÞ�

��
N
: ð7Þ

Here the function NðtÞ obeys a Gaussian probability
distribution with a stationary autocorrelation function
Aðt − t0Þ. Thus, the effect of coupling to the quantum-
gravitational vacuum, which is fully encoded in Fvac, is to
introduce stationary stochastic noise in the detector.
As we will see, this creates fluctuations in the length of
the arm. All the statistical properties of the fluctuations,
such as the standard deviation, can be obtained from the
autocorrelation function, Aðt − t0Þ. In contrast, we find that
the phase of Fvac has a different structure, which is
responsible for dissipative effects. For a coherent state
corresponding to a classical gravitational wave hðtÞ, the
phase of the influence functional also contains a
term i=ℏ

R
T
0 dtð1=4Þm0hðtÞ½XðtÞ − X0ðtÞ�.

Quantum geodesic deviation.—We have so far focused
on the Feynman-Vernon influence functional for a detector
coupled to a gravitational field, treating both the detector
and the field quantum mechanically. Since realistic detec-
tors are well approximated as classical, it is appropriate to
exploit that simplification. In our expression for the
transition probability, Eq. (3), we identify the classical
paths, which dominate the integral, as those which render
the phases stationary. This leads to an effective stochastic
equation of motion for the separation of the masses or,
equivalently, for the arm length of a gravitational wave
detector. In the presence of a classical gravitational wave
hðtÞ, we find

̈ξðtÞ − 1

2

�
ḧðtÞ þ N̈ðtÞ −m0G

c5
d5

dt5
ξ2ðtÞ

�
ξðtÞ ¼ 0: ð8Þ

Thus, the relative acceleration of the two masses ̈ξ depends
on three terms. Each term in this equation, which extends
the geodesic deviation equation of general relativity to the
case where the spacetime metric is treated as a quantum
field, has intuitive meaning. The first represents the usual
tidal acceleration due to the passing of a classical gravi-
tational wave h; this is the effect that has been famously
measured at LIGO. The last term is the gravitational
counterpart of the dissipative Abraham-Lorentz term in
electromagnetism; it is the gravitational radiation reaction
[16–19]. Although it is likely to be of little experimental
consequence, it is nevertheless notable that such a term
arises from a well-behaved quantum theory. (As will be
reported elsewhere, this approach to radiation reaction
avoids the notorious pathologies that arise from too literal
interpretation of the Abraham-Lorentz equation [20]). Most
importantly, our equation contains a noise term N̈. Thus,
our equation, while classical, is stochastic rather than
deterministic [14,15]. It is reminiscent, mathematically,
of the Langevin equation used to describe Brownian
motion.
We have calculated the statistical properties of this noise,

specifically the power spectrum SðωÞ, in several cases; a
precise calculation of the quantum-gravitational power
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spectrum is essential to distinguish the noise from other less
fundamental sources of noise at gravitational wave detec-
tors [21,22]. S is the Fourier transform of the autocorre-
lation function Aðt − t0Þ. For the vacuum and for coherent
states, we find that, for low frequencies, the power
spectrum behaves like S ¼ 4Gℏω=c5. For thermal states
at temperature T, we find S ¼ 4Gℏω=c5 coth ðℏω=2kBTÞ.
Strikingly, if the gravitational field is in a squeezed state
with squeezing parameter r, we find that the noise also
contains a nonstationary piece; focusing on the stationary
part, we find S ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cosh 2r
p

4Gℏω=c5, which means that
the quantum-induced fluctuations of the detector arm
length can be exponentially enhanced.
Discussion.—We have shown that a pair of freely falling

particles in a quantized gravitational field obeys the
stochastic equation (8), rather than the classical geodesic
deviation equation; see Fig. 2. Let us estimate the size of
the fluctuations, neglecting the radiation reaction term.
Then, ξðtÞ ≈ ½1þ ðhþ NÞ=2�ξ0, where ξ0 is the equilib-
rium length of the arm; for LIGO, ξ0 ≈ 4 km, while for
LISA, ξ0 ≈ 106 km. As the formula makes clear, the
fluctuations of N induce fluctuations in ξ. We find that
hξi ¼ ð1þ hðtÞ=2Þξ0, with a variance σ2 ¼ ξ20hN2i=4 ¼
ξ20Að0Þ=4. Although Að0Þ ¼ 1=π

R∞
0 dωSðωÞ is formally

divergent, the size of the fluctuations is nevertheless finite
because limits on detector sensitivity impose a cutoff ωmax

on the frequency integral; for LIGO, ωmax ∼ 1 kHz, while
for LISA, ωmax ∼ 0.1 Hz. With these numerical values, the
amplitude of the fluctuations in the vacuum state σ ∼
lPξ0ωmax=c is roughly a Planck length lP, and therefore,
completely unobservable; essentially, the same amplitude is
obtained also when the gravitational field is in a coherent
state corresponding to a classical gravitational wave propa-
gating in the vacuum [9].
However, the amplitude of the fluctuations can be

enhanced for noncoherent states of the gravitational field.
As representative examples, we may consider states formed
by the action of displacement operators representing the
classical field h acting not upon the vacuum, but upon
thermal or squeezed states. For thermal states at temper-
ature T, we have found an enhancement by a factorffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBT=ℏωmax

p
. Such thermal states could arise, for exam-

ple, through the isotropic cosmic gravitational wave back-
ground (T ∼ 1K) or as a result of the Hawking evaporation
of black holes [23]. In the latter case, the temperature can be
very high, but there is an additional suppression due to the
localization of the source. Most promisingly, there can be
significant noise for squeezed states. As noted above, we
expect the amplitude of fluctuations to be enhanced expo-
nentially in the squeezing parameter σ∼er=2lPξ0ωmax=c.
Physically, gravitational squeezed states can have different
possible origins. Squeezed vacua can arise in inflationary
cosmology [24–26]. But in addition, squeezed states are
naturally produced by classical sources through the non-
linearities of gravity, without assuming any exotic physics.
Indeed, it is enlightening to compare the quantum nature

of electromagnetic and gravitational radiation fields for
known and contemplated sources; the quantum noise of
photons on the dynamics of charged particles is analogous
and of course the subject of quantum optics. It is almost
always appropriate to treat the coupling of the electromag-
netic fields to its sources as linear. When one has linear
coupling of a radiation field to dynamical degrees of
freedom which are described, to a good approximation,
as deterministic and only weakly perturbed by the radia-
tion, then the radiation field will be well described by a
coherent quantum state [27]. This is the case for most radio
and microwave sources and for lasers. When the sources
themselves are stochastic, one obtains a stochastic mixture
of coherent states. This is the case for the most common
(quasithermal) higher frequency sources. With special
techniques, e.g., using nonlinear crystals, one can construct
sources whose coupling to the electromagnetic field is
quadratic, leading to squeezed states. The default
“classical” treatment of gravitational radiation, which
corresponds to coherent states, is appropriate when the
sources are governed by approximately deterministic
dynamics involving weak linear coupling to the gravita-
tional field. Here, in effect, one expands the quantum action
around a classical solution of the Einstein-Hilbert equations
(including flat spacetime in the radiation zone). This is

FIG. 2. Schematic spacetime diagram of the motion of the end
points of the detector in the presence of one polarization of a
quantized gravitational wave propagating along k⃗. On average,
each particle traces an inertial trajectory following a geodesic of
the classical spacetime. The physical separation ξðtÞ of the two
particles obeys, on average, the geodesic deviation equation. The
effect of quantization of the gravitational field is to introduce a
random fluctuation on top of this classical motion.
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often an appropriate default, e.g., in describing slow orbital
decay of large bodies. It does not apply straightforwardly to
Hawking radiation, which is a quasithermal quantum
process, or to its cosmological analogs or, more specula-
tively, to phase transitions in the early Universe. During the
late stages of black hole mergers, the approximation of
treating gravitational radiation as a weak linear perturbation
is not appropriate, despite the deterministic nature of the
dynamics. Here one can expect to encounter effects we
might callmolding of the quantum radiation state, which go
beyond (quadratic) squeezing.
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