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The study of liquid-liquid phase transitions has attracted considerable attention. One interesting example
of this phenomenon is phosphorus, for which the existence of a first-order phase transition between a low
density insulating molecular phase and a conducting polymeric phase has been experimentally established.
In this Letter, we model this transition by an ab initio quality molecular dynamics simulation and explore a
large portion of the liquid section of the phase diagram. We draw the liquid-liquid coexistence curve and
determine that it terminates into a second-order critical point. Close to the critical point, large coupled
structure and electronic structure fluctuations are observed.
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One phenomenon that has attracted much attention is
that of liquid-liquid (LL) phase transitions. Most famously,
the existence of such an LL transition terminating in a
critical point has been suggested as a possible explanation
for the famous water anomalies [1–9]. Unfortunately the
location of this transition in the so-called “no man’s land”
has made its experimental study challenging. Besides
water, the existence of LL transitions has been discussed
in a number of other systems [10–17]. However, exper-
imental investigations in these systems are also fraught with
difficulties since the reported LL transitions occur in a
regime of high temperatures and pressures.
Among the many systems for which an LL transition has

been reported, the most intriguing example is that of liquid
phosphorus. Phosphorus is an interesting substance with
several practical applications, and already, in the solid
phase, it exhibits many allotropes. Thus, it is perhaps not a
surprise that different structures can also be found in the
liquid state. Katayama et al. [18,19] have reported exper-
imental evidence of the existence of a first-order LL
transition as signaled by an abrupt density jump. The
low-density liquid (LDL) phase is an insulating fluid whose
structural units are P4 molecules, while the high-density
liquid (HDL) phase is a conducting fluid whose structure
has been described as polymeric. Subsequent experiments
have revealed that the slope of the LL transition line in the
temperature-pressure (TP) plane is negative [20]. In addi-
tion, the existence of a liquid-liquid critical point at T ≥
2500 K has been conjectured but so far no firm exper-
imental evidence has been reported.
This obviously calls for simulations that can clarify the

behavior of liquid phosphorus and, in particular, the
existence of a critical point. This task is made difficult
by the metal to nonmetal transition that accompanies the
LL transition. The change in chemical bonding renders a
standard approach to the development of a realistic phos-
phorus force field challenging. A possible alternative is to

use ab initio molecular dynamics simulations in which the
forces are computed on the fly from accurate electronic
structure calculations. Typically, the forces are calculated
by using density functional theory (DFT), which provides a
balance between computational expediency and accuracy.
A number of such simulations have been reported, and they
all have shown that a DFT-based approach is able to
reproduce the existence of the LL transition [21–24]. A
somewhat indirect attempt has also been made at estimating
the critical point [25,26]. Although these simulations are
highly illuminating, their computational cost has required
some compromise as to the system size and the simulation
length and has allowed only for a limited number of
thermodynamics states to be explored.
A way of obtaining ab initio MD accuracy at a limited

computational cost was suggested some time ago by Behler
and Parrinello [27,28]. Their idea was to use the generali-
zation capabilities of neural networks (NN) to express the
potential energy surface. The parameters of the NN were
trained on a relatively large set of DFT calculations
performed on appropriately selected atomic configurations.
Since Behler and Parrinello’s work, much progress has
been made, and their approach has become very popular
[29–35]. Here, we shall use, as we have done in the recent
past [36–38], the Deep MD code [39,40]. In the case of
phosphorus, an approach similar in spirit but based on the
Gaussian Kernel representation of the potential has already
been used to study its allotropes and liquid state [41].
However, the exploration of the high pressure and high
temperature part of the phase diagram has been limited.
In the Behler-Parrinello–type approach, a judicious

choice of the training configurations is important. In our
case, the choice of configurations is complicated by the fact
that a first-order phase transition is a rare event. Therefore,
the transition state configurations that are essential for
determining the transition barrier between one phase and
the other are rarely sampled and are not encoded in the NN.
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For this reason, when studying rare events, we have
proposed to train the NN extracting configurations from
an enhanced sampling run where the low probability but
highly important transition state arrangements are sampled
[36–38]. Furthermore, in the study of phase diagrams, it is
convenient to follow Refs. [37] and [42,43] and use a
multithermal multibaric (MultiTP) enhanced sampling
method. The MultiTP approach allows entire regions of
the TP phase diagram to be explored at a computational
cost comparable to that of a single standard simulation at a
given temperature and pressure. A full description of the
technical details can be found in the Supplemental Material
(SM) [44]. Here, we mention only the fact that we use the
on-the-fly probability enhanced sampling (OPES) version
of the MultiTP approach [61,62]. OPES, like many other
enhanced sampling methods [63–65], relies on the defi-
nition of a collective variable (CV) whose fluctuations are
enhanced by the method [62,66]. A natural choice would
have been to use the density as a CV that is the natural order
parameter for the phase transition. However, since this CV
performed poorly due to its inability to describe the local
molecular arrangement, we choose instead the value of the
first peak of the Debye structure factor [67] that has
contrasting intensity in the LDL and HDL phases (see
Fig. S2 in SM [44]). However, we express our results as a
function of the density that is a standard thermodynamic
variable.
[38,68,69]. That is, one first performs a number of

standard ab initio MD calculations in a grid of thermody-
namic conditions. These configurations are used to obtain a
first guess of the NN potential. In reality, four slightly
different NN models are obtained by starting the NN
stochastic optimization of the NN from different initial
conditions. One of these models is then used to drive the
MultiTP-OPES calculation. Periodically, we check whether
all four NN models predict similar forces. If the discrep-
ancy between their predictions exceeds a preassigned
threshold (see the SM [44]), we calculate the DFT energies
and forces for those particular configurations and add these
data to the training set and at a fixed interval retrain all four
NN models. This procedure is continued until no signifi-
cant discrepancy between the four models is observed. The
calculations presented here are based on the SCANþ D3
exchange-correlation model that gives a good agree-
ment between experiment [20] and theory (see Fig. S7
in SM [44]).
Since our MD calculations are based on a MultiTP

approach, by following a reweighing technique discussed
in Ref. [66] we can calculate the system properties in the
range of temperatures and pressures that is specified at the
beginning of the calculation without having to perform new
simulations. Thus, it is painless to identify the transition
line and other significant thermodynamic points. The
procedure used to draw the coexistence line is illustrated
with the example of the free energy surface behavior as a

function of pressure at T ¼ 2000 K (see Fig. 1, left). At the
lower pressure, the LDL phase is more likely, while at the
high pressure HDL prevails. The location at which they are
equally probable defines the pressure where the two liquids
coexist at the selected temperature. This behavior is
consistent with a first-order transition, and the locus of
such coexistence points defines the boundary line between
the two phases.
This behavior is to be contrasted with that at

T ¼ 2800 K, where pressure induces a continuous change
from a LDL-like to an HDL-like structure (see Fig. 1,
right). In this region of the phase diagram, one is above the
critical point. However, also in this part of the phase
diagram, a thermodynamically significant line can be
drawn. This is the so called Widom line that can be defined
as the locus of a point where properties such as isothermal
compressibility, correlation length, and isobaric heat
capacity are the highest. Here, we calculated the maximum
of the compressibility to draw the Widom line in Fig. 2.
At T ¼ 2800 K, this point occurs at P ¼ 0.2 GPa as a
consequence of the fact that the free energy surface
curvature is very low, and, therefore, the compressibility
is large.
This analysis can be repeated at all desired temperatures

and pressures in the preassignedMultiTP range and leads to
the phase diagram in Fig. 2. In agreement with experiments
[20], the coexistence line has a negative slope. It can be
clearly seen that there is a density jump across the phase
transition line. As the system approaches the critical point
(whose position will be determined below), the jump
eventually vanishes. In the same picture we also show
two typical structural units of LDL and HDL. In LDL, the
structural units are P4 molecules while the HDL phase is
characterized by the presence of small irregular branched
multimers of different sizes that continuously form and

FIG. 1. Free energy surfaces as a function of the density for
T ¼ 2000 K (T < Tc) (left) and T ¼ 2800 K (T > Tc) (right).
For each T, three free energy surfaces at different P values are
shown. Error bars, calculated using the weighted block average
technique (number of blocks ¼ 4) discussed in Ref. [62], are
smaller than the linewidth.
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break. One such multimer is shown in the picture. As we
approach the critical point from the LDL side we see (see
Fig. S10 in SM [44]) that more and more P4 units are
broken. This is to be contrasted with what happens on the
HDL side where the multimeric structure is maintained
until one gets rather close to the critical point.
We now focus on the transition region. To this effect, we

show in Fig. 3 the free energy profiles’ evolution along the
coexistence curve. At the lower temperatures, the LDL and
HDL minima are well separated, reflecting the presence of
a first-order transition. However, as the temperature is
increased, the barrier between the two phases vanishes and

the two phases can no longer be distinguished. The
barrierless transition between the two regimes identifies
the critical point. However, reading its precise position
from Fig. 3 is difficult, and in addition one expects large
finite size effects. For this reason, we made a Binder
cumulant analysis (see Sec. S4.2 in SM [44]) [70,71] that
allows us to compute the thermodynamic value of the
critical point. In such a way, we estimate for the critical
temperature and pressure the values Tc ∼ 2690 K and Pc ∼
0.2 GPa (see Fig. S8 in the SM [44]), which are in line with
the indirect ones suggested by the experimentalists [20].
It is fascinating to study the evolution of the electronic

structure as reflected in the electronic density of states
(DOS) and the inverse participation ratio that provides the
extent of localization of electronic states (see Sec. S4.3 in
the SM [44] for a detailed discussion). We perform this
analysis by computing the electronic structure on selected
configurations along the coexistence line.
Deep into the two-phase region, the LDL DOS clearly

shows a gap (see Fig. 4, top), and the occupied states are
well localized as is to be expected from a molecular liquid.
In contrast, the HDL DOS has a metallic character (see
Fig. 4, bottom), and the electronic states are rather
delocalized (see the SM [44]). The behavior of the LDL
as it approaches Tc is rather intriguing since localized states
appear in the band gap. These states are localized on the
partially broken P4 molecules (Fig. 5); thus, they will not
contribute to a metal type conductivity. As we further
approach Tc, the number of broken P4 molecules increases
(see Fig. S10 in the SM [44]) and so does the number of
states in the band gap. Right at Tc, as shown in Fig. 6, the

FIG. 2. Liquid phosphorus phase diagram. The value of the
density as a function of T and P is also plotted. The LL
coexistence line is the red line. Black points denote the exper-
imental coexistence points [20]. The calculated LL critical point
is indicated by the black star, and the Widom line (discussed also
in Sec. S4.1 in the SM [44]) is shown as a dashed green line.
Typical structures of the molecular and polymeric phases are
depicted as balls and sticks.

FIG. 4. DOS for configurations in the LDL (top) and HDL
(bottom) phase at T ¼ 1275 K. The Fermi level is shown as a red
dashed line.

FIG. 3. Free energy surfaces as a function of the density and
temperatures along the coexistence line. The color of the free energy
surfaces varies from blue at T ¼ 2400 K to red at T ¼ 3000 K.
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electronic structure undergoes huge fluctuations and goes
from a metallic-like character (#1) to an insulator one (#4),
passing via intermediate states (#2 and #3) such as those
described above.
Finally, we hope that this fascinating behavior can be

experimentally probed since this is an unusual critical
system in which a metal-nonmetal transition is strongly

coupled to a structural one. The success of our strategy that
combines MultiTP-OPES with machine learning encour-
ages us to study in the future even more complex systems.
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