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The ground-state criticality of many-body systems is a resource for quantum-enhanced sensing, namely,
the Heisenberg precision limit, provided that one has access to the whole system. We show that, for partial
accessibility, the sensing capabilities of a block of spins in the ground state reduces to the sub-Heisenberg
limit. To compensate for this, we drive the Hamiltonian periodically and use a local steady state for
quantum sensing. Remarkably, the steady-state sensing shows a significant enhancement in precision
compared to the ground state and even achieves super-Heisenberg scaling for low frequencies. The origin
of this precision enhancement is related to the closing of the Floquet quasienergy gap. It is in close
correspondence with the vanishing of the energy gap at criticality for ground-state sensing with global
accessibility. The proposal is general to all the integrable models and can be implemented on existing
quantum devices.
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Introduction.—The high sensitivity of quantum systems
to variations of their environment makes them superior
sensors to their classical counterparts [1–8]. This is reflected
in the Cramér-Rao inequality, which determines the preci-
sion limit of estimating an unknown field h, quantified by the
standard deviation δh, through δh≥1=

ffiffiffiffiffiffiffiffi
MF

p
, where M is

the number of samples and F is the Fisher information
[9,10]. While the classical Fisher information scales as
FC ∼ N (standard limit), with N being the number of
resources (e.g., number of particles) in the sensor, the
quantum mechanics allows us to go beyond this and achieve
FQ ∼ N2 (Heisenberg limit). Several quantum features are
known to provide enhanced sensing precision: (i) entangle-
ment in the special form of Greenberger-Horne-Zeilinger
[11–15] or N00N [16–18] states, (ii) wave function collapse
resulted from sequential measurements separated by inter-
vals of free evolution [19–25], and (iii) quantum criticality in
many-body systems [26–32]. Any of these approaches have
their advantages and disadvantages. If a d-dimensional
many-body system operates near its critical ground state,
the quantum Fisher information (QFI) of the whole system
scales as FQ ∼ N2=dν, where the ν characterizes the critical
exponent for the divergence of the correlation length [33].
In the absence of global accessibility, one can only control a
subsystem, which, in general, is a mixed state. A key
question is how QFI scales with the subsystem size in a
critical system. Besides, can the Heisenberg scaling be
retrieved if the scaling becomes sub-Heisenberg, due to
the mixedness of the subsystem?
Nonequilibrium dynamics of periodically driven many-

body systems has been exploited for investigating the
emergence of steady state [34], time crystals [35],

topological systems [36,37], entanglement generation
[38–42], Floquet spectroscopy [43,44], dynamically con-
trolled quantum thermometry [45], and dynamical phase
transitions [46–48]. The useful features of periodically
driven many-body systems are that (i) any local subsystem
reaches a steady state, and (ii) the Floquet mechanism is
applicable, which simplifies the study of the dynamics.
In nonintegrable systems, a periodic field drives any small
subsystem to a featureless infinite temperature thermal
steady state with no memory of the Hamiltonian parameters
[49]. On the other hand, for integrable models, a nontrivial
steady state can be obtained that carries information about
the Hamiltonian parameters [34,38–42,50–52]. An impor-
tant, yet unexplored, open question is whether the local
steady states of periodically driven integrable systems can
be used for enhancing the sensing precision in many-body
sensors with partial accessibility.
In this Letter, we address the above open problems by

considering an XY spin chain for detecting a transverse
magnetic field. We first find that, in the absence of global
accessibility, the sensing precision, even at the critical
point, diminishes to sub-Heisenberg scaling. Then, we
show that by applying a proper periodic transverse field
and exploiting the local steady states we can even achieve
super-Heisenberg sensitivity. Remarkably, this enhanced
sensing is not limited to the critical points of the system and
exists for all the points across the phase diagram with a
vanishing Floquet quasienergy gap. The protocol can be
realized in existing quantum devices using simple
measurements.
Model.—We consider quantum XY spin chain for meas-

uring an unknown static transverse magnetic field h0. To
manipulate the system for the desired accuracy, we apply a
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periodic transverse field hðtÞ to the system. Therefore, the
total Hamiltonian can be written as

HðtÞ ¼ −
J
2

XN
i¼1

��
1þ γ

2

�
σxi σ

x
iþ1 þ

�
1 − γ

2

�
σyi σ

y
iþ1

�

−
½h0 þ hðtÞ�

2

X
i

σzi ; ð1Þ

where σΘðΘ ¼ x; y; zÞ are the Pauli matrices, J (which is
set to be one throughout the Letter) is the exchange
coupling, −1 ≤ γ ≤ 1 is the anisotropic parameter, and
the periodic-boundary conditions, i.e., σαNþ1 ≡ σα1 , is
imposed. At time t ¼ 0, a periodic field of the form of
hðtÞ ¼ h1 sinðωtÞ is applied to the system, where ω ¼ 2π=τ
with τ being the time period. The Hamiltonian Hð0Þ shows
quantum criticality at h0 ¼ hc such that hc=J ¼ 1 for all
values of γ [53]. We consider that system is initially
prepared in the ground state of Hð0Þ. However, as dis-
cussed in the Supplemental Material [54], the proposed
mechanism is general and works for other initial states.
By switching the probe field hðtÞ, the initial state starts to
evolve. The exact solution for the evolved is provided in the
Supplemental Material.
Sensing with global accessibility.—If one has access to

the whole system, namely, jΨ0ðtÞi, then the QFI is given
by FQðtÞ ¼ 4χFðtÞ, where χFðtÞ ¼ h∂h0ΨðtÞj∂h0ΨðtÞi−
jhΨðtÞj∂h0ΨðtÞij2. Especially for Hð0Þ the global QFI
has been extensively studied and it was shown that at
the ground-state criticality it scales as Fgs

Q ¼ FQð0Þ ∼ N2

[26–31,33,59–65], while away from the criticality it scales
as Fgs

Q ¼ FQð0Þ ∼ N. We show this in the Supplemental
Material by simulating the QFI of the global system. In the
rest of the Letter, we focus on partial accessibility.
Sensing with partial accessibility.—In the absence of

global accessibility, one has to rely on accessing a local
block of size L with L ≪ N. The partially accessible state
of the system is described by the reduced density matrix
obtained by tracing out all particles out of the block L,
namely, ρLðtÞ ¼ trN−LðjΨ0ðtÞihΨ0ðtÞjÞ. The QFI of the
state is given by [10]

FQ ¼
X2L
r;s¼1

2Reðhλrj∂h1ρLjλsihλsj∂h1ρLjλriÞ
λr þ λs

; ð2Þ

where ρL ¼ P
2L

r¼1 λrjλrihλrj with λr and jλri being the
eigenvalues and eigenvectors of ρL, respectively. Re½·�
denotes the real parts of the quantity inside the parenthesis
and the sum excludes terms for which λr þ λs ¼ 0. Note
that the QFI is independent of the choice of the measure-
ment operators and, in general, depends on the unknown
parameter h0. Calculation of the QFI for the state ρL is
given in the Supplemental Material [54].

Steady state of a block.—After a long time t, the reduced
density matrix ρLðtÞ equilibrates to a steady state. Our goal
in this Letter is to measure the QFI for such a steady state.
By using Hðtþ τÞ ¼ HðtÞ and Floquet formalism, one
can obtain the time-evolved state after n cycles from an
initial state jΨ0i as jΨðnτÞi ¼

P
i e

−iμinτjμiihμijΨ0i. Here
fμi; jμiig are the eigenvalues (Floquet quasienergies) and
eigenvectors of the one-period Floquet operator UðτÞ ¼
T e−i

R
τ

0
HðtÞdt, with T being time-order operator. The

expectation value of a local operator O in the time-evolved
state then can be expressed as hOi ¼ P

lhμljOjμli
jhμljΨ0ij2 þ P

l≠jhμljOjμjihμljΨ0ihΨ0jμjie−2iðμl−μjÞnτ.
The first and second terms describe the diagonal contri-
bution and the fluctuation around the diagonal term,
respectively. The second term vanishes for a long time
(Riemann-Lebesgue lemma). Using the above formalism,
we calculate the expectation value of the fermionic corre-
lation functions in the limit t → ∞. (See Supplemental
Material for obtaining the local steady state of the
model [54].) These correlation functions give the steady-
state QFI, namely, Fss

Q ¼ limt→∞ FQðtÞ for the state ρL.
Ground-state sensing.—In the absence of global acces-

sibility, one has to rely on the sensing capability of ρL,
which, in general, is a mixed state. This mixedness can
diminish the sensing capability. To quantify this, we
consider the ground state of Hð0Þ for N ¼ 6000 and plot
the QFI, namely, Fgs

Q , for L ¼ 2 and L ¼ 4 in Figs. 1(a)
and 1(b), respectively. It can be seen from the plots that Fgs

Q

shows peaks at points h0=J ¼ �1 that marks the quantum

FIG. 1. The QFI of the ground state Fgs
Q as a function of γ and

h0 for (a) L ¼ 2 and (b) L ¼ 4. (c) The Fgs
Q as a function of h0

when γ ¼ 1 for various choices of L. (d) The log-log scaling of
Fgs
Q as a function of L for different γ’s. The fitting is shown by

the regular line, whereas the markers represent the original
data. In all panels N ¼ 6000.
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criticality of the system. It is an interesting observation
that not only the QFI of a full chain but also that of the
reduced state distinguishes the criticality [26,31,66–68]. In
Figs. 1(a) and 1(b), the Fgs

Q becomes vanishingly small at
γ ¼ 0. Since for γ ¼ 0, the field part of Hð0Þ commutes
with the interaction part, the variation of the field h0 does
not induce any change in the ground state of Hð0Þ, which
reflects itself in Fgs

Q ¼ 0. To have a better understanding of
the role of L, we plot Fgs

Q versus h0 at γ ¼ 1 in Fig. 1(c) for
various L’s. The QFI increases with L and this effect
becomes even more pronounced at the critical point
h0=J ¼ �1. To have a quantitative analysis for the
scaling of the QFI at the critical point, in Fig. 1(d) we
plot Fgs

Q as a function of L for γ ¼ 0.1, 0.5, and 1 by fixing
h0=J ¼ 1. The scaling follows a power-law form, i.e.,
Fgs
Q ðh ¼ hcÞ ∼ aLη. Numerical fitting results in ða; ηÞ ¼

ð6.718; 1.8Þ for γ ¼ 0.1, ða; ηÞ ¼ ð4.2235; 1.76Þ for
γ ¼ 0.5, and ða; ηÞ ¼ ð2.967; 1.74Þ for γ ¼ 1, respectively.
Thus, for the critical ground state and with partial acces-
sibility, the QFI scales weaker than the Heisenberg bound
(i.e., η ¼ 2), although it still outperforms the standard limit
(i.e., η ¼ 1) showing quantum-enhanced sensing. Is it
possible to improve this and retrieve Heisenberg scaling?
Steady-state sensing.—To enhance the sensing capability

with ρLðtÞ, we propose to apply a periodic drive as given
in Eq. (1). The resulting dynamics tend to thermalize the
quantum state of the block. In nonintegrable systems,
while the global quantum state can still be used for
quantum sensing [69,70], the subsystems equilibrate to
an infinite temperature state and carry no information about
the Hamiltonian [49]. In integrable models, as in Eq. (1),
the steady state does not thermalize to the infinite temper-
ature due to local conserved quantities and thus carries
a wealth of information about the parameters of the
system [34]. To find the sensing capability of the steady
state of a block of L ¼ 4, in Figs. 2(a) and 2(b) we plot
FQðnτÞ as a function of time t ¼ nτ for ω ¼ 1 and 4,
respectively. The QFI reaches an equilibrium after a short
transition time. Equilibration of the probe state is of
multifold importance: (i) the imprinted information of h0
in the density matrix may enhance the sensitivity and
(ii) the emergent steady state remains almost fixed in time,
which simplifies the measurement.
To see the sensing capability of the steady state for a

choice of h1 ¼ 1.5 and L ¼ 4, we compute the steady-state
QFI, denoted as Fss

Q . In Fig. 2(c), we plot Fss
Q as a function

of γ and h0 for ω ¼ 4. The Fss
Q shows similar behavior

as Fgs
Q in Figs. 1(a) and 1(b), except around γ ¼ 0 (the

behavior of Fss
Q as a function of γ is discussed in the

Supplemental Material [54]). In Fig. 2(d), we plot the Fss
Q

for a lower frequency (ω ¼ 2). Interestingly, the Fss
Q

becomes nonzero along the line h0 ¼ 0, whereas it is zero
for ω ¼ 4. Thus, by properly driving the system, extra
peaks appear in the QFI even away from the ground-state

criticality and thus achieve quantum-enhanced sensing
over a wider range.
Floquet resonance.—To investigate the emergence of

extra peaks, we fix the parameters γ ¼ 1 and h1 ¼ 1 and
plot the Fss

Q as a function of h0 in Figs. 3(a) and 3(b) for
frequenciesω ¼ 1 and ω ¼ 0.5, respectively. In each panel,
the different curves are for different block size L. It can be
seen clearly from the plots that the number of peaks
increases as the frequency gets smaller. The peaks are
related to the eigenvalues of the one-period Floquet
operator UkðτÞ, where UkðτÞ is the Floquet operator
for each quasimomentum mode k ∈ ½0; π�, as discussed
in the Supplemental Material [54]. The eigenvalues

FIG. 2. FQ as a function of time t ¼ nτ for (a) ω ¼ 1, (b) ω ¼ 4
for L ¼ 4, h0=J ¼ 1, and γ ¼ 1. Steady state Fss

Q as a function of
h0 and γ for (c) ω ¼ 4 and (d) ω ¼ 2. (a)–(d) The system size is
N ¼ 6000 and h1 ¼ 1.5.
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FIG. 3. The QFI in the steady state with respect to h0 for
different frequencies: (a) ω ¼ 1 and (b) ω ¼ 0.5. The difference
of Floquet quasienergies μ�k¼π for frequencies: (c) ω ¼ 1 and
(d) ω ¼ 0.5. (a)–(d) N ¼ 6000, h1 ¼ 1.5, and γ ¼ 1.
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of UkðτÞ can be written as eiτμ
�
k , where μ�k ¼

�ðω=πÞtan−1 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Re½ukðτÞ�=1þ Re½ukðτÞ�

p
are the

Floquet quasienergies [34]. Interestingly, the peaks occur
at the position of Floquet resonances, i.e., when μþk ¼ μ−k .
For h1 ≠ 0, the quasienergy spectrum shows avoided
crossing except at k ¼ 0 and k ¼ π. Thus, the Floquet
resonance condition will only be satisfied by modes
at k ¼ 0 and k ¼ π. Therefore, the Floquet resonance
condition for the energy eigenvalues becomes 2Ek¼0;πðt ¼
0Þ ¼ qω for some integer q, where Ekðt ¼ 0Þ ¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½h0 − J cosðkÞ�2 þ J2γ2 sinðkÞ2

p
(see the Supplemental

Material for definition of Ek). We depict the behavior of
the Floquet quasienergy gap, i.e., μþk¼π − μ−k¼π, as a function
of h0 for ω ¼ 1 and ω ¼ 0.5 in Figs. 3(c) and 3(d),
respectively. It can be seen that, for each peak in Figs. 3(a)
and 3(b), the quasienergy gap vanishes at those h0. Thus,
the vanishing of the quasienergy gap is responsible for the
peaks in the Fss

Q observed in Figs. 3(a) and 3(b). The
detailed calculation of Floquet formalism and quasienergy
gap is provided in the Supplemental Material [54].
Driving-enhanced sensing.—As seen above, driving the

system can enhance the steady-state QFI. It is of utmost
interest to see whether this can improve the scaling of the
QFI as a function of L. We first focus on the critical point,
i.e., h0=J ¼ 1, and without loss of generality fix the
parameters γ ¼ 1 and h1 ¼ 1.5. In Figs. 4(a)–4(c) we plot
Fss
Q versus L together with a power-law fitting function

F̃ss
Q ∼ aLη at h0=J ¼ 1 for different frequencies such that

Fss
Q ≈ F̃ss

Q . The coefficient η shows that in the range ω ≤ 2

the scaling of the steady state surpasses the scaling of the

ground state. Remarkably, by tuning the driving frequency
to ω ¼ 2, see Fig. 4(a), one can indeed retrieve the
Heisenberg scaling. Further decreasing the frequency can
lead to the remarkable super-Heisenberg scaling of η > 2,
shown in Figs. 4(b) and 4(c). This driving-enhanced
sensitivity is not limited to the critical point. In Fig. 4(d),
we depict the scaling of the QFI versus the block size L
for ω ¼ 1 at h0=J ¼ 0.5, where the Fss

Q peaks due to
Floquet resonance, see Fig. 3(a). Interestingly, the scaling
(η ¼ 1.8) exceeds the standard quantum limit showing
that quantum-enhanced sensing can be achieved at all
Floquet resonances.
Role of the frequency.—As discussed earlier, the

enhanced precision is directly related to the vanishing
quasienergy gap, which is a function of the frequency of
the driving field. In fact, the frequency ω has two roles.
First, for ω < 2, the QFI shows extra peaks that are absent
in the phase diagram of the ground state, e.g., see Fig. 2(d).
Second, at the vanishing Floquet quasienergy gap points,
lowering the ω results in better scaling. For instance, as
shown in Figs. 4(a)–4(c), for the critical field h0 ¼ 1 one
can achieve super-Heisenberg scaling once ω < 1.
Realization in near-term quantum simulators.—Among

the emerging quantum simulators, ion traps [71–73] and
superconducting devices [74–76] are the best candidates
for the realization of our protocol, as their interaction
can be described by the Hamiltonian in Eq. (1). Near-term
quantum devices and simulators are limited in size [77]. To
investigate the performance of our protocol on small
systems, in Fig. 5(a) we plot FQ for a block of size
L ¼ 4 as a function of time for various total system sizes.
Interestingly, small systems provide high quantum Fisher
information, indicating more potential for sensing. This is
because the larger the system, the more degrees of freedom
for the dispersion of information.
It is worth emphasizing that FQ provides an ultimate

bound for sensing precision attained only if the measure-
ment basis is optimal. However, the optimal measurement
basis might be complicated and depends on the unknown
parameter that makes the saturation of the Cramér-Rao
bound very challenging. Here, we consider a simple (but
nonoptimal) block magnetization measurement along the
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FIG. 4. Scaling of the Fss
Q versus L along the vanishing Floquet

quasienergy gap line for (a) ðω; h0Þ ¼ ð2; 1Þ, (b) ðω; h0Þ ¼ ð1; 1Þ,
(c) ðω; h0Þ ¼ ð0.5; 1Þ, and (d) ðω; h0Þ ¼ ð1; 0.5Þ. The coefficients
are a1 ¼ 3.43, a2 ¼ 3.33, a3 ¼ 3.78, and a4 ¼ 3.15. (a)–(d)
γ ¼ 1, h1 ¼ 1.5.
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FIG. 5. (a) Dynamics of QFI for different system size N and
fixed block size L ¼ 4. (b) Dynamics of both quantum and
classical Fisher information of a block of L ¼ 4 for a system of
size N ¼ 14. (a),(b) h0 ¼ 1; γ ¼ 1, h1 ¼ 1.5, and ω ¼ 1.
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x direction and compute its corresponding classical Fisher
information FC (the definition of FC is in the Supplemental
Material [54]). In Fig. 5(b), we plot both FC and FQ for a
block of size L ¼ 4 as a function of time in a system of
length N ¼ 14. Interestingly, the FC not only follows the
behavior of FQ but also takes high values. It shows that a
simple nonoptimal measurement can serve for sensing.
Conclusion.—In this Letter, we have shown that, in the

absence of global accessibility of the whole state, the
Heisenberg scaling of the QFI for the critical many-body
ground states of integrable systems reduces to sub-
Heisenberg. To retrieve the Heisenberg scaling, we pro-
posed to drive the system using a periodic field and use the
steady state of a block for sensing. Our results show that, by
tuning the frequency of the periodic field, one can generate
multiple peaks across the phase diagram, improving the
sensing over a larger interval. The scaling at all these peaks
exceeds the standard limit precision and shows significant
enhancement compared to the ground state. Remarkably, at
lower frequencies, one can even achieve super-Heisenberg
scaling for the QFI. This steady-state quantum-enhanced
sensitivity can be explained by the closing of the Floquet
quasienergy gap. The protocol is general to all integrable
models and best suited for ion traps and superconducting
devices in which even a simple nonoptimal measurement,
such as block magnetization, can be used for achieving
high precision.
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[4] L. Pezzé, A. Smerzi, M. K. Oberthaler, R. Schmied, and P.
Treutlein, Quantum metrology with nonclassical states of
atomic ensembles, Rev. Mod. Phys. 90, 035005 (2018).

[5] K. Y. Yip, K. On Ho, K. Y. Yu, Y. Chen, W. Zhang, S.
Kasahara, Y. Mizukami, T. Shibauchi, Y. Matsuda, S. K.
Goh, and S. Yang, Quantum sensing of local magnetic field
texture in strongly correlated electron systems under ex-
treme conditions, Science 366, 1355 (2019).

[6] A. Kuwahata, T. Kitaizumi, K. Saichi, T. Sato, R. Igarashi,
T. Ohshima, Y. Masuyama, T. Iwasaki, M. Hatano, F.
Jelezko, M. Kusakabe, T. Yatsui, and M. Sekino,
Magnetometer with nitrogen-vacancy center in a bulk
diamond for detecting magnetic nanoparticles in biomedical
applications, Sci. Rep. 10, 2483 (2020).

[7] J. Smits, J. T. Damron, P. Kehayias, A. F. McDowell, N.
Mosavian, I. Fescenko, N. Ristoff, A. Laraoui, A. Jarmola,
and V. M. Acosta, Two-dimensional nuclear magnetic reso-
nance spectroscopy with a microfluidic diamond quantum
sensor, Sci. Adv. 5, eaaw7895 (2019).

[8] J. Casanova, E. Torrontegui, M. B. Plenio, J. J. García-
Ripoll, and E. Solano, Modulated Continuous Wave Control
for Energy-Efficient Electron-Nuclear Spin Coupling,
Phys. Rev. Lett. 122, 010407 (2019).

[9] S. L. Braunstein and C. M. Caves, Statistical Distance and
the Geometry of Quantum States, Phys. Rev. Lett. 72, 3439
(1994).

[10] M. G. A. Paris, Quantum estimation for quantum technol-
ogy, Int. J. Quantum. Inform. 07, 125 (2009).

[11] V. Giovannetti, S. Lloyd, and L. Maccone, Quantum-
enhanced measurements: Beating the standard quantum
limit, Science 306, 1330 (2004).

[12] V. Giovannetti, S. Lloyd, and L. Maccone, Quantum
Metrology, Phys. Rev. Lett. 96, 010401 (2006).

[13] F. Fröwis and W. Dür, Stable Macroscopic Quantum Super-
positions, Phys. Rev. Lett. 106, 110402 (2011).

[14] D. Dobrzanski, J. Kołodyński, and M. Guta, The elusive
Heisenberg limit in quantum enhanced metrology, Nat.
Commun. 3, 1063 (2012).

[15] H. Kwon, K. C. Tan, T. Volkoff, and H. Jeong, Non-
classicality as a Quantifiable Resource for Quantum
Metrology, Phys. Rev. Lett. 122, 040503 (2019).

[16] J. P. Dowling, Quantum optical metrology–the lowdown on
high-N00N states, Contemp. Phys. 49, 125 (2008).

[17] J. Joo, W. J. Munro, and T. P. Spiller, Quantum Metrology
with Entangled Coherent States, Phys. Rev. Lett. 107,
083601 (2011).

[18] S. Slussarenko, M. M. Weston, H. M. Chrzanowski, L. K.
Shalm, V. B. Verma, S. W. Nam, and G. J. Pryde, Uncondi-
tional violation of the shot-noise limit in photonic quantum
metrology, Nat. Photonics 11, 700 (2017).

[19] C. Bonato, M. S. Blok, H. T. Dinani, D. W. Berry, M. L.
Markham, D. J. Twitchen, and R. Hanson, Optimized
quantum sensing with a single electron spin using real-time
adaptive measurements, Nat. Nanotechnol. 11, 247 (2016).

[20] R. S. Said, D. W. Berry, and J. Twamley, Nanoscale mag-
netometry using a single-spin system in diamond, Phys.
Rev. B 83, 125410 (2011).

[21] B. L. Higgins, D.W. Berry, S. D. Bartlett, H. M. Wiseman,
and G. J. Pryde, Entanglement-free Heisenberg-limited
phase estimation, Nature (London) 450, 393 (2007).

[22] D.W. Berry, B. L. Higgins, S. D. Bartlett, M.W. Mitchell,
G. J. Pryde, and H. M. Wiseman, How to perform the most
accurate possible phase measurements, Phys. Rev. A 80,
052114 (2009).

[23] B. L. Higgins, D. W. Berry, S. D. Bartlett, M.W.
Mitchell, H. M. Wiseman, and G. J. Pryde, Demonstrating
Heisenberg-limited unambiguous phase estimation without
adaptive measurements, New J. Phys. 11, 073023 (2009).

PHYSICAL REVIEW LETTERS 127, 080504 (2021)

080504-5

https://doi.org/10.1103/PhysRevX.6.041044
https://doi.org/10.1103/RevModPhys.89.035002
https://doi.org/10.1103/RevModPhys.90.035006
https://doi.org/10.1103/RevModPhys.90.035006
https://doi.org/10.1103/RevModPhys.90.035005
https://doi.org/10.1126/science.aaw4278
https://doi.org/10.1038/s41598-020-59064-6
https://doi.org/10.1126/sciadv.aaw7895
https://doi.org/10.1103/PhysRevLett.122.010407
https://doi.org/10.1103/PhysRevLett.72.3439
https://doi.org/10.1103/PhysRevLett.72.3439
https://doi.org/10.1142/S0219749909004839
https://doi.org/10.1126/science.1104149
https://doi.org/10.1103/PhysRevLett.96.010401
https://doi.org/10.1103/PhysRevLett.106.110402
https://doi.org/10.1038/ncomms2067
https://doi.org/10.1038/ncomms2067
https://doi.org/10.1103/PhysRevLett.122.040503
https://doi.org/10.1080/00107510802091298
https://doi.org/10.1103/PhysRevLett.107.083601
https://doi.org/10.1103/PhysRevLett.107.083601
https://doi.org/10.1038/s41566-017-0011-5
https://doi.org/10.1038/nnano.2015.261
https://doi.org/10.1103/PhysRevB.83.125410
https://doi.org/10.1103/PhysRevB.83.125410
https://doi.org/10.1038/nature06257
https://doi.org/10.1103/PhysRevA.80.052114
https://doi.org/10.1103/PhysRevA.80.052114
https://doi.org/10.1088/1367-2630/11/7/073023


[24] S. Gammelmark and K. Mølmer, Remote Quantum Sensing
with Heisenberg Limited Sensitivity in Many Body
Systems, Phys. Rev. Lett. 112, 170401 (2014).

[25] G. S. Jones, S. Bose, and A. Bayat, Remote quantum
sensing with Heisenberg limited sensitivity in many body
systems, arXiv:2003.02308.

[26] P. Zanardi and N. Paunković, Ground state overlap and
quantum phase transitions, Phys. Rev. E 74, 031123 (2006).

[27] P. Zanardi, H. T. Quan, X. Wang, and C. P. Sun, Mixed-state
fidelity and quantum criticality at finite temperature, Phys.
Rev. A 75, 032109 (2007).

[28] P. Zanardi, M. G. A. Paris, and L. Campos Venuti, Quantum
criticality as a resource for quantum estimation, Phys. Rev.
A 78, 042105 (2008).

[29] C. Invernizzi, M. Korbman, L. C. Venuti, and M. G. A.
Paris, Optimal quantum estimation in spin systems at
criticality, Phys. Rev. A 78, 042106 (2008).

[30] M. Skotiniotis, P. Sekatski, andW. Dür, Quantum metrology
for the Ising Hamiltonian with transverse magnetic field,
New J. Phys. 17, 073032 (2015).

[31] S.-J. Gu, Fidelity approach to quantum phase transitions,
Int. J. Mod. Phys. B 24, 4371 (2010).

[32] S. Gammelmark and K. Mølmer Phase transitions and
Heisenberg limited metrology in an Ising chain interacting
with a single-mode cavity field, New J. Phys. 13, 053035
(2011).

[33] M.M. Rams, P. Sierant, O. Dutta, P. Horodecki, and J.
Zakrzewski, At the Limits of Criticality-Based Quantum
Metrology: Apparent Super-Heisenberg Scaling Revisited,
Phys. Rev. X 8, 021022 (2018).

[34] A. Russomanno, A. Silva, and G. E. Santoro, Periodic
Steady Regime and Interference in a Periodically
Driven Quantum System, Phys. Rev. Lett. 109, 257201
(2012).

[35] D. V. Else, B. Bauer, and C. Nayak, Floquet Time Crystals,
Phys. Rev. Lett. 117, 090402 (2016).

[36] M. S. Rudner, N. H. Lindner, E. Berg, and M. Levin,
Anomalous Edge States and the Bulk-Edge Correspondence
for Periodically Driven Two-Dimensional Systems, Phys.
Rev. X 3, 031005 (2013).

[37] M. Thakurathi, A. A. Patel, D. Sen, and A. Dutta, Floquet
generation of Majorana end modes and topological invari-
ants, Phys. Rev. B 88, 155133 (2013).

[38] T. J. G. Apollaro, G. M. Palma, and J. Marino, Entangle-
ment entropy in a periodically driven quantum Ising chain,
Phys. Rev. B 94, 134304 (2016).

[39] A. Russomanno, G. E. Santoro, and R. Fazio, Entanglement
entropy in a periodically driven Ising chain, J. Stat. Mech.
(2016) 073101.

[40] A. Sen, S. Nandy, and K. Sengupta, Entanglement gen-
eration in periodically driven integrable systems: Dynamical
phase transitions and steady state, Phys. Rev. B 94, 214301
(2016).

[41] S. Lorenzo, J. Marino, F. Plastina, G. M. Palma, and T. J. G.
Apollaro, Quantum critical scaling under periodic driving,
Sci. Rep. 7, 5672 (2017).

[42] U. Mishra, R. Prabhu, and D. Rakshit, Quantum correlations
in periodically driven spin chains: Revivals and steady-
state properties, J. Magn. Magn. Mater. 491, 165546
(2019).

[43] J. E. Lang, R. B. Liu, and T. S. Monteiro, Dynamical-
Decoupling-Based Quantum Sensing: Floquet Spectros-
copy, Phys. Rev. X 5, 041016 (2015).

[44] J. V. Koski, A. J. Landig, A. Pályi, P. Scarlino, C. Reichl, W.
Wegscheider, G. Burkard, A. Wallraff, K. Ensslin, and T.
Ihn, Floquet Spectroscopy of a Strongly Driven Quantum
Dot Charge Qubit with a Microwave Resonator, Phys. Rev.
Lett. 121, 043603 (2018).

[45] V. Mukherjee, A. Zwick, A. Ghosh, Xi Chen, and G.
Kurizki, Enhanced precision bound of low-temperature
quantum thermometry via dynamical control, Commun.
Phys. 2, 162 (2019).

[46] K. Yang, L. Zhou, W. Ma, Xi Kong, P. Wang, Xi Qin, X.
Rong, Ya Wang, F. Shi, J. Gong, and J. Du, Floquet
dynamical quantum phase transitions, Phys. Rev. B 100,
085308 (2019).

[47] R. Jafari and A. Akbari, Floquet dynamical phase transition
and entanglement spectrum, Phys. Rev. A 103, 012204
(2021).

[48] S. Zamani, R. Jafari, and A. Langari, Floquet dynamical
quantum phase transition in the extended XY model:
Nonadiabatic to adiabatic topological transition, Phys.
Rev. B 102, 144306 (2020).

[49] K. Mallayya and M. Rigol, Heating Rates in Periodically
Driven Strongly Interacting Quantum Many-Body Systems,
Phys. Rev. Lett. 123, 240603 (2019).

[50] T. Ishii, T. Kuwahara, T. Mori, and N. Hatano, Heating in
Integrable Time-Periodic Systems, Phys. Rev. Lett. 120,
220602 (2018).

[51] T. Brydges, A. Elben, P. Jurcevic, B. Vermersch, C. Maier,
B. P. Lanyon, P. Zoller, R. Blatt, and C. F. Roos, Probing
entanglement entropy via randomized measurements,
Science 364, 260 (2019).

[52] U. Mishra and A. Bayat, Integrable quantum many-body
sensors for ac field sensing, arXiv:2105.13507.

[53] S. Sachdev, Quantum Phase Transitions (Cambridge
University Press, Cambridge, England, 2017).

[54] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.127.080504 for (i) the
analytical treatment of the time-dependent Hamiltonian,
(ii) computing the quantum Fisher information, and (iii) in-
vestigating the role of the initial state, which contains
Refs. [55–58].

[55] E. Lieb, T. Schultz, and D. Mattis, Two soluble models
of an antiferromagnetic chain, Ann. Phys. (N.Y.) 16, 407
(1961).

[56] P. Pfeuty, The one-dimensional Ising model with a trans-
verse field, Ann. Phys. (N.Y.) 57, 79 (1970).

[57] A. Carollo, B. Spagnolo, and D. Valenti, Symmetric
logarithmic derivative of fermionic Gaussian states, Entropy
20, 485 (2018).

[58] D. Šafránek, Discontinuities of the quantum Fisher infor-
mation and the Bures metric, Phys. Rev. A 95, 052320
(2017).

[59] L. Gong and P. Tong, Fidelity susceptibility, and von
Neumann entropy to characterize the phase diagram
of an extended Harper model, Phys. Rev. B 78, 115114
(2008).

[60] D. Schwandt, F. Alet, and S. Capponi, Quantum
Monte Carlo Simulations of Fidelity at Magnetic

PHYSICAL REVIEW LETTERS 127, 080504 (2021)

080504-6

https://doi.org/10.1103/PhysRevLett.112.170401
https://arXiv.org/abs/2003.02308
https://doi.org/10.1103/PhysRevE.74.031123
https://doi.org/10.1103/PhysRevA.75.032109
https://doi.org/10.1103/PhysRevA.75.032109
https://doi.org/10.1103/PhysRevA.78.042105
https://doi.org/10.1103/PhysRevA.78.042105
https://doi.org/10.1103/PhysRevA.78.042106
https://doi.org/10.1088/1367-2630/17/7/073032
https://doi.org/10.1142/S0217979210056335
https://doi.org/10.1088/1367-2630/13/5/053035
https://doi.org/10.1088/1367-2630/13/5/053035
https://doi.org/10.1103/PhysRevX.8.021022
https://doi.org/10.1103/PhysRevLett.109.257201
https://doi.org/10.1103/PhysRevLett.109.257201
https://doi.org/10.1103/PhysRevLett.117.090402
https://doi.org/10.1103/PhysRevX.3.031005
https://doi.org/10.1103/PhysRevX.3.031005
https://doi.org/10.1103/PhysRevB.88.155133
https://doi.org/10.1103/PhysRevB.94.134304
https://doi.org/10.1088/1742-5468/2016/07/073101
https://doi.org/10.1088/1742-5468/2016/07/073101
https://doi.org/10.1103/PhysRevB.94.214301
https://doi.org/10.1103/PhysRevB.94.214301
https://doi.org/10.1038/s41598-017-06025-1
https://doi.org/10.1016/j.jmmm.2019.165546
https://doi.org/10.1016/j.jmmm.2019.165546
https://doi.org/10.1103/PhysRevX.5.041016
https://doi.org/10.1103/PhysRevLett.121.043603
https://doi.org/10.1103/PhysRevLett.121.043603
https://doi.org/10.1038/s42005-019-0265-y
https://doi.org/10.1038/s42005-019-0265-y
https://doi.org/10.1103/PhysRevB.100.085308
https://doi.org/10.1103/PhysRevB.100.085308
https://doi.org/10.1103/PhysRevA.103.012204
https://doi.org/10.1103/PhysRevA.103.012204
https://doi.org/10.1103/PhysRevB.102.144306
https://doi.org/10.1103/PhysRevB.102.144306
https://doi.org/10.1103/PhysRevLett.123.240603
https://doi.org/10.1103/PhysRevLett.120.220602
https://doi.org/10.1103/PhysRevLett.120.220602
https://doi.org/10.1126/science.aau4963
https://arXiv.org/abs/2105.13507
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.080504
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.080504
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.080504
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.080504
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.080504
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.080504
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.080504
https://doi.org/10.1016/0003-4916(61)90115-4
https://doi.org/10.1016/0003-4916(61)90115-4
https://doi.org/10.1016/0003-4916(70)90270-8
https://doi.org/10.3390/e20070485
https://doi.org/10.3390/e20070485
https://doi.org/10.1103/PhysRevA.95.052320
https://doi.org/10.1103/PhysRevA.95.052320
https://doi.org/10.1103/PhysRevB.78.115114
https://doi.org/10.1103/PhysRevB.78.115114


Quantum Phase Transitions, Phys. Rev. Lett. 103, 170501
(2009).

[61] A. F. Albuquerque, F. Alet, C. Sire, and S. Capponi,
Quantum critical scaling of fidelity susceptibility, Phys.
Rev. B 81, 064418 (2010).

[62] A. Polkovnikov and V. Gritsev, Universal dynamics near
quantum critical points, understanding quantum phase
transitions, in Understanding Quantum Phase Transitions,
edited by Lincoln D. Carr (Taylor & Francis, Boca Raton,
2010).

[63] B. Damski, Fidelity susceptibility of the quantum Ising
model in a transverse field: The exact solution, Phys. Rev. E
87, 052131 (2013).

[64] B. Damski and M.M. Rams, Exact results for fidelity
susceptibility of the quantum Ising model: The interplay
between parity, system size, and magnetic field, J. Phys. A
47, 025303 (2014).

[65] A. Langari and A. T. Rezakhan, Quantum renormalization
group for ground-state fidelity., New J. Phys. 14, 053014
(2012).

[66] P. D. Sacramento, N. Paunković, and V. R. Vieira, Fidelity
spectrum and phase transitions of quantum systems, Phys.
Rev. A 84, 062318 (2011).

[67] C.-Y. Park, M. Kang, C.-W. Lee, J. Bang, S.-W. Lee, and H.
Jeong, Quantum macroscopicity measure for arbitrary spin
systems and its application to quantum phase transitions,
Phys. Rev. A 94, 052105 (2016).

[68] W. C. Yu, Y. C. Li, P. D. Sacramento, and H.-Q. Lin,
Reduced density matrix and order parameters of a topo-
logical insulator, Phys. Rev. B 94, 245123 (2016).

[69] L. J. Fiderer and D. Braun, Quantum metrology with
quantum-chaotic sensors, Nat. Commun. 9, 1351 (2018).

[70] W. Liu, M. Zhuang, Bo Zhu, J. Huang, and C. Lee,
Quantum metrology via chaos in a driven Bose-Josephson
system, Phys. Rev. A 103, 023309 (2021).

[71] C. Monroe, W. C. Campbell, E. E. Edwards, R. Islam,
D. Kafri, S. Korenblit, A. Lee, P. Richerme, C. Senko,
and J. Smith, in Quantum simulation of spin models with
trapped ions, Proceedings of the International School of
Physics “Enrico Fermi,” Course CLXXXIX, edited by M.
Knoop, I. Marzoli, and G. Morigi (Ios Pr Inc., 2015),
pp. 169–187.

[72] J. I. Cirac and P. Zoller, Goals and opportunities in quantum
simulation, Nat. Phys. 8, 264 (2012).

[73] R. Blatt and C. F. Roos, Quantum simulations with trapped
ions, Nat. Phys. 8, 277 (2012).

[74] Q. Guo, C. Cheng, Z.-H. Sun, Z. Song, H. Li, Z. Wang, W.
Ren, H. Dong, D. Zheng, Y. Zhang, R. Mondaini, H. Fan,
and H. Wang, Observation of energy-resolved many-body
localization, Nat. Phys. 17, 234 (2021).

[75] M. Gong, G. D. Neto, C. Zha, Y. Wu, H. Rong, Y. Ye, S. Li,
Q. Zhu, S. Wang, Y. Zhao, F. Liang, J. Lin, Y. Xu, C.-Z.
Peng, H. Deng, A. Bayat, X. Zhu, and J.-W. Pan, Exper-
imental characterization of quantummany-body localization
transition, Phys. Rev. Research 3, 033043 (2021).

[76] P. Roushan et al., Spectroscopic signatures of localization
with interacting photons in superconducting qubits, Science
358, 1175 (2017).

[77] J. Preskill, Quantum computing in the NISQ era and
beyond, Quantum 2, 79 (2018).

PHYSICAL REVIEW LETTERS 127, 080504 (2021)

080504-7

https://doi.org/10.1103/PhysRevLett.103.170501
https://doi.org/10.1103/PhysRevLett.103.170501
https://doi.org/10.1103/PhysRevB.81.064418
https://doi.org/10.1103/PhysRevB.81.064418
https://doi.org/10.1103/PhysRevE.87.052131
https://doi.org/10.1103/PhysRevE.87.052131
https://doi.org/10.1088/1751-8113/47/2/025303
https://doi.org/10.1088/1751-8113/47/2/025303
https://doi.org/10.1088/1367-2630/14/5/053014
https://doi.org/10.1088/1367-2630/14/5/053014
https://doi.org/10.1103/PhysRevA.84.062318
https://doi.org/10.1103/PhysRevA.84.062318
https://doi.org/10.1103/PhysRevA.94.052105
https://doi.org/10.1103/PhysRevB.94.245123
https://doi.org/10.1038/s41467-018-03623-z
https://doi.org/10.1103/PhysRevA.103.023309
https://doi.org/10.1038/nphys2275
https://doi.org/10.1038/nphys2252
https://doi.org/10.1038/s41567-020-1035-1
https://doi.org/10.1103/PhysRevResearch.3.033043
https://doi.org/10.1126/science.aao1401
https://doi.org/10.1126/science.aao1401
https://doi.org/10.22331/q-2018-08-06-79

