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In this work, we address fundamental limitations of quantum teleportation—the process of transferring
quantum information using classical communication and preshared entanglement. We develop a new
teleportation protocol based upon the idea of using ancillary entanglement catalytically, i.e., without
depleting it. This protocol is then used to show that catalytic entanglement allows for a noiseless quantum
channel to be simulated with a quality that could never be achieved using only entanglement from the
shared state, even for catalysts with a small dimension. On the one hand, this allows for a more faithful
transmission of quantum information using generic states and fixed amount of consumed entanglement. On
the other hand, this shows, for the first time, that entanglement catalysis provides a genuine advantage in a
generic quantum-information processing task. Finally, we show that similar ideas can be directly applied to
study quantum catalysis for more general problems in quantum mechanics. As an application, we show that
catalysts can activate so-called passive states, a concept that finds widespread application, e.g., in quantum
thermodynamics.
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Introduction.—Quantum entanglement leads to correla-
tions between distant particles that cannot be explained by
any classical mechanism [1–3]. This intricate phenomenon
is nowadays seen as an indispensable resource with an
enormous number of modern applications. One of the most
important applications of entanglement is quantum tele-
portation [4], a communication task that uses a pair of
maximally entangled qubits hqqi and two bits of commu-
nication ½c → c� to simulate a noiseless quantum channel
½q → q�:

hqqi þ 2½c → c� ≥ ½q → q�: ð1Þ

The significance of the protocol is best evidenced by its
widespread applicability in various areas of quantum
information [5–8], computation [9–11], and even general
relativity [12–15]. Quantum teleportation has been realized
in laboratories using a variety of different technologies,
including photonic qubits [16–21], optical modes [22–24],
nuclear magnetic resonance [25], atomic ensembles [26–
28], trapped atoms [29–31], or solid-state systems [32–34].
Realistic teleportation protocols use generic entangled

states, and, therefore, the quantum channels they simulate
are inevitably noisy. In terms of the teleportation inequality
(1), this means that substituting hqqi with a generic
bipartite state hρi leads to a quantum channel that is no
longer noiseless and has to be replaced with a general
teleportation channelN . A central problem of fundamental
and practical significance is engineering teleportation
protocols that simulate as faithfully as possible noiseless

quantum channels, as measured by a natural figure of merit,
the average fidelity of teleportation [35].
The teleportation inequality (1) is perhaps the best

evidence for the resourcelike nature of entanglement, as
it guarantees that simulating a noiseless quantum channel
always consumes a pair of maximally entangled qubits.
Therefore, it is reasonable to expect that, in a general
protocol, teleportation fidelity can be increased only at the
expense of using more entanglement. Interestingly, quan-
tum mechanics allows for a very bizarre use of entangle-
ment, one that is already helpful without entanglement
being consumed or degraded. This surprising phenomenon
is called quantum catalysis and was introduced in Ref. [36],
further analyzed in Refs. [37–43], and subsequently
adapted to many physical settings [44–60]. Quantum
catalysis demonstrates that access to a special entangled
state (the catalyst) allows two distant parties to manipulate
their entanglement in a way that would be otherwise
impossible. Importantly, the catalyst is not consumed
during the process, so that the parties can repeat their task
again or use it for another purpose. This makes catalysis a
particularly interesting extension of the standard paradigm
of local operations and classical communication (LOCC).
Indeed, quantum catalysis can be viewed as a paradigm
shift that leads to the ultimate limits of quantum protocols
under fixed resources. Since the catalyst appearing in a
catalytic protocol is not depleted, it does not contribute to
the overall balance of consumed resources.
In this work, we are interested in finding the ultimate such

limit of quantum teleportation. More specifically, we ask
what is the best teleportation fidelity that can be achieved
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when consuming a given entangled state and using an
arbitrary amount of entanglement catalytically? We show
that this natural extension of the standard teleportation
protocol allows quantum channels with much larger telepor-
tation fidelity to be achieved or, equivalently, for the transfer
of quantum information much more reliably. More formally,
we show that using a quantum catalyst one can achieve
teleportation fidelity equal to a regularization of the standard
teleportation fidelity. This quantifier is then shown to be
strictly larger than the standard teleportation fidelity for a
wide range of pure states, therefore uncovering new limits for
quantum teleportation under fixed resources. This can also be
interpreted as providing the first example where quantum
catalysis is successfully used in a generic information
processing task and opens up the prospects for much further
investigation into the power and generality of quantum
catalysis, beyond what had been appreciated up until now.
In this line, we show that our methods can be adapted beyond
quantum teleportation and quantum information.
Framework.—In what follows, we will be interested in

scenarios involving two distant parties (say, Alice and Bob)
who are allowed to use LOCC. We say that E ∈ LOCCðA∶BÞ
if it can bewritten as a sequence of quantumchannels applied
locally by A and B, intertwined with classical communica-
tion. To quantify entanglement, wewill use the entanglement
fraction [61], which is defined as the maximal overlap with a
maximally entangled state, that is,

fðρÞ ≔ max
E

hϕþ
ABjEðρABÞjϕþ

ABi
such that E ∈ LOCCðA∶BÞ; ð2Þ

where jϕþ
ABi ¼

P
d
i¼1 jiiAjiiB=

ffiffiffi
d

p
denotes a maximally

entangled state shared between A and B.
Standard quantum teleportation.—Before presenting our

main results, let us briefly recall the task of quantum
teleportation [4]. In its most general form, the protocol
involves two spatially separated parties, Alice and Bob,
who share an arbitrary quantum state ρAB of dimension
dA × dB. A third party, often called a referee, provides
Alice with a quantum state φR of dimension dR which is
unknown to both parties. The goal set before Alice and Bob
is to transfer the unknown state from one party to another,
using only local operations and classical communication,
i.e., quantum channels T ∈ LOCCðRA∶BÞ, and shared
entanglement. Under this condition, all possible states
which can be achieved in Bob’s lab can be written as

ρ0B ¼ trRAT ðφR ⊗ ρABÞ: ð3Þ

The above protocol can be viewed equivalently as a process
of establishing a quantum channel between Alice and Bob
that maps the input state φR to the output ρ0B. The goal of
quantum teleportation is then to simulate a noiseless
quantum channel between Alice and Bob, i.e., an identity

map idA→B. The quality of teleportation, or, equivalently,
the fidelity of the resulting teleportation channel, can be
quantified using the average fidelity of teleportation [35]
(or simply “fidelity of teleportation”) defined as

hFiρ ≔ max
T

Z
hφjtrRAT ðφR ⊗ ρABÞjφidφ

such that T ∈ LOCCðRA∶BÞ: ð4Þ

The integral in Eq. (4) is computed over a uniform
distribution of all pure input states φ ¼ jφihφj according
to a normalized Haar measure

R
dφ ¼ 1. It can be easily

verified that 0 ≤ hFiρ ≤ 1 for all density operators ρ.
Furthermore, the case hFiρ ¼ 1 corresponds to perfect
teleportation from Eq. (1) and is possible if and only if ρ
is maximally entangled. In practice, the fidelity of telepor-
tation will always be less than one. Furthermore, when the
shared state is separable, the corresponding teleportation
protocol is said to be “classical,” and fidelity of teleportation
is bounded by hFic ≔ 2=ðdR þ 1Þ. Importantly, it was
shown in Ref. [61] that fidelity of teleportation (4) is related
with entanglement fraction (2) via

hFiρ ¼
fðρÞdR þ 1

dR þ 1
: ð5Þ

In what follows, wewill focus on this quantity and show that
catalysts allow one to increase the entanglement fraction
without consuming any additional entanglement.
Results.—Let us start by describing a catalytic extension

of the general quantum teleportation protocol. Then we
display a main theorem that gives a lower bound on its
performance and show that the bound is tight enough to
demonstrate a sharp advantage with respect to the standard
teleportation protocol. We conclude with a simple gener-
alization of these methods that can be used to address
catalytic advantages in more general settings.
Catalytic quantum teleportation.—Assume that Alice

and Bob, in addition to their shared state ρAB, have access
to a quantum system CC0 prepared in a state ωCC0 . This
additional system is distributed such that Alice has access
only to C and Bob only to its C0 part. Alice is then given an
unknown quantum state φR, and the parties perform a
protocol T ∈ LOCCðRAC∶BC0Þ which now acts on both
systems they share and the input system. Moreover, for the
protocol to be catalytic, we demand that T does not modify
the catalyst. Notably, we do allow the catalyst to become
correlated with ρAB during the process, and in Supplemental
Material [62] we show that these correlations can be made
arbitrarily small in trace distance, at the expense of using
larger catalysts. The final state of Bob’s subsystem at the end
of the catalytic teleportation protocol reads

ρ0B ¼ trRACC0 ½T ðφR ⊗ ρAB ⊗ ωCC0 Þ�: ð6Þ
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The quality of the protocol can be quantified similarly as in
the case of standard teleportation, i.e., using the fidelity of
teleportation (4). Since we have the freedom to choose the
catalyst, we define the fidelity of catalytic teleportation
hFcatiρ as

hFcatiρ ¼ max
T ;ω

Z
hφjtrRACC0T ðφR ⊗ ρAB ⊗ ωCC0 Þjφidφ

such that trRABT ðφR ⊗ ρAB ⊗ ωCC0 Þ ¼ ωCC0 ;

T ∈ LOCCðRAC∶BC0Þ;
ωCC0 ≥ 0; tr½ωCC0 � ¼ 1: ð7Þ

Let us now define a regularization of the entanglement
fraction from Eq. (2), which we will denote by fregðρÞ and
whose significance will soon become evident, namely,

fregðρÞ ≔ lim
n→∞

fnðρ⊗nÞ
n

; ð8Þ
where fnðσÞ is the solution to

fnðσÞ ≔ max
E

Xn

i¼1

hϕþjtr=iEðσÞjϕþi

such that E ∈ LOCCðA1…An∶B1…BnÞ; ð9Þ
where tr=ið·Þ is the partial trace performed over particles
1…i − 1; iþ 1…n. Notice that by taking a suboptimal
guess E ¼ E1 ⊗ E2 ⊗ … ⊗ En with E1 ¼ E2 ¼ � � � ¼ En
we can infer that fregðρÞ ≥ fðρÞ for all quantum states ρ.
With the above definitions, we are now ready to present our
main result.
Theorem 1: The fidelity of catalytic teleportation

satisfies

hFcatiρ ≥
fregðρÞdR þ 1

dR þ 1
: ð10Þ

In other words, there is a protocol T ∈ LOCCðRAC∶BC0Þ
and a catalyst ωCC0 that achieves the bound (10).
Proof.—We will sketch the proof of Theorem 1 (see

Supplemental Material [62] for a formal derivation). We
start by constructing the catalyst and a subroutine T E that
increases entanglement fraction of ρAB. Then we use this
preprocessed state to perform standard teleportation T 0.
The total protocol then reads T ¼ T 0 ∘ T E .
Let n ≥ 2 be a finite natural number and denote C ≔

C2…CnM and C0 ≔ C0
2…C0

nM, where M is a classical
register. Moreover, let E ∈ LOCCðAC∶BC0Þ be a channel
(yet to bedetermined) anddenote σn−i ≔ tr1…iEðρ⊗nÞ,where
tr1…ið·Þ denotes partial trace over the first i copies of ρ⊗n.
Consider the following catalyst, introduced in Ref. [63]:

ωCC0 ¼ 1

n

Xn

i¼1

ρ⊗i ⊗ σn−i|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
C2C0

2
…CnC0

n

⊗ jiihijM: ð11Þ

This catalyst is a state of n − 1 quantum registers, each of
dimension d, and a classical register of dimension n. For a
given value i of the classical register, the remaining n − 1
quantum registers contain i copies of the shared bipartite state
ρ and ann − i-partite state σn−i that is themarginal ofEðρ⊗nÞ.
Let us label for clarity A1 ≡ A and Ai ≡ Ci for 2 ≤ i ≤ n

and similarly for Bi and BC2…Cn. The joint state of the
resource and the catalyst, ρAB ⊗ ωCC0 , is presented in
Fig. 1(a) for the exemplary case with n ¼ 5. The initial
protocol T E can be summarized as follows. (1) Apply E ∈
LOCCðAC∶BC0Þ to the nth pair usingM as the control [see
Fig. 1(b)]. (2) Relabel jiiM → jiþ 1iM for i < n and
jniM → j1iM [see Fig. 1(c)]. (3) Relabel A1B1 → AiBi
for all i in M [see Fig. 1(d)]. (4) Discard the catalyst
CC0. As a result, the system and the catalyst transform into

ρAB → ρðnÞAB ¼ trCC0T EðρAB ⊗ ωCC0 Þ

¼ 1

n

Xn

i¼1

tr=iEðρ⊗n
ABÞ; ð12Þ

ωCC0 → ω0
CC0 ¼ trABT EðρAB ⊗ ωCC0 Þ ¼ ωCC0 : ð13Þ

FIG. 1. The catalytic subroutine that uses a noisy entangled
state as a catalyst to enhance entanglement fraction. (a)–(e)
describe subsequent steps of the protocol and (f) the final state
of the main system and the catalyst. The catalyst remains
unchanged as the system is transformed into a state with a higher
entanglement fraction.
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Next, we apply the standard teleportation scheme for
noisy states [64]. Taking fUA

a g for a ∈ f1;…; d2g to be the
set of generalized Pauli operators with respect to basis
fjiiAg, we can summarize T 0 as follows. (1) Twirl ρAB into
an isotropic state:

ρðnÞAB → fðρðnÞABÞϕþ
AB þ ½1 − fðρðnÞABÞ�ϕ⊥

AB; ð14Þ

where ϕ⊥ ¼ ð1 − ϕþÞ=ðd2 − 1Þ. (2) Perform teleportation
on RA → B: (a) Alice measures RA using a positive
operator-valued measure with elements:

MRA
a ¼ ð1 ⊗ UaÞϕþ

RAð1 ⊗ U†
aÞ; ð15Þ

(b) Alice communicates outcome a to Bob; (c) Bob applies
U†

að·ÞUa to his share of the state. The fidelity of telepor-
tation in this process reads

fðρðnÞABÞdR þ 1

dR þ 1
: ð16Þ

Notice that so far the channel E was arbitrary, and so we can
now optimize T ¼ T 0 ∘ T E over all feasible channels
E ∈ LOCCðAC∶BC0Þ. Taking the limit n → ∞ and using

limn→∞ fðρðnÞABÞ ¼ fregðρABÞ leads to Eq. (10). ▪
The regularized entanglement fraction appears difficult

to compute, in general. However, for large n, one can use
typicality arguments to find a wide range of states for which
the lower bound in Eq. (10) still demonstrates a significant
advantage over standard teleportation.
Demonstrating catalytic advantage in teleportation.—

Our reasoning so far was valid for arbitrary bipartite density
operators ρAB. In this section, we will restrict our attention
to pure states ρAB ¼ jψABihψABj and use typicality argu-
ments to infer that the presented protocol for catalytic
teleportation leads to a generic advantage over the standard
teleportation protocol. Interestingly, this is a consequence
of an essential property of catalysis: that certain catalysts
amplify typical properties of states, even at the level of a
single copy. This property of catalysts has been recently
employed in Refs. [52–54,57,60].
Lemma 1: The regularized entanglement fraction

fregðψABÞ for pure states ψAB satisfies

fregðψABÞ ≥ max
ψ 0

fðψ 0
ABÞ ð17Þ

such that SðρAÞ ≥ Sðρ0AÞ; ð18Þ

where ρA ¼ trBψAB and ρ0A ¼ trBψ 0
AB and SðρÞ ¼

−trρ log ρ is the Shannon entropy.
We now apply Lemma 1 to show that catalytic telepor-

tation outperforms standard teleportation for a wide range
of generic quantum states.
Example.—As a simple example, let us consider tele-

porting a three-dimensional quantum system (dR ¼ 3) using

a singlet. In this case, the state shared betweenAlice and Bob
can be written as ψAB ¼ P

3
i¼1

ffiffiffiffi
λi

p jiiAjiiB, with Schmidt
coefficients λ1 ¼ 1=2, λ2 ¼ 1=2, and λ3 ¼ 0. Its entangle-
ment fraction is equal to fðψABÞ ¼ ðP3

i¼1

ffiffiffiffi
λi

p Þ2=3 ¼ 2=3,
and, therefore, its fidelity of teleportation reads

hFiψ ¼ 0.75; ð19Þ
which is also larger than the classical threshold hFci ¼ 1=2.
Let us now analyze the protocol for catalytic teleporta-

tion. In this case, the relevant benchmark is the fidelity of
catalytic teleportation (7) whose lower bound can be found
using Lemma 1. To compute it, we choose the optimizer in
Eq. (17) to be the state ψ 0

AB with Schmidt coefficients
λ01 ¼ x and λ02 ¼ λ03 ¼ ð1 − xÞ=2, where x is the unique
solution to hðxÞ ¼ x log 2 (which is x ≈ 0.77) and
hðxÞ ¼ −x log x − ð1 − xÞ logð1 − xÞ. This is a feasible
choice, since the entropies of marginals of ψAB and ψ 0

AB
are both equal to log 2. According to Lemma 1, the
regularized entanglement fraction can be lower bounded
by the entanglement fidelity of ψ 0

AB; therefore, freg ≥
fðψ 0

ABÞ ≈ 4=5. Using Theorem 1, we can then infer that

hFcati ≥ 0.85; ð20Þ
which is roughly 13% larger than the best fidelity that could
ever be obtained when using ψAB alone. Interestingly, this
simple example is not a singular case: There are, in fact,
many entangled states whose performance in teleportation
can be catalytically enhanced. To show this in Fig. 2, we
used Lemma 1 and numerically computed the lower bound
on the catalytic advantage ηðψÞ ≔ ðhFcati − hFiÞ=hFi. In
Supplemental Material [62], we further show that a similar
advantage is present when using a small catalyst (qutrit). In
that case, the enhancement is around 2.5% of what can be
achieved using ψAB only.
Beyond quantum teleportation.—The catalytic subrou-

tine T E we used to prove Theorem 1 can be used to address
more general problems, beyond increasing the entangle-
ment fraction, in various paradigms—other than LOCC.
Let us mention the general idea, postponing the details and
an explicit application to Supplemental Material [62].
Let us for simplicity focus on the case of a single party S

and let E be any channel from a class of channels C ⊆
CPTP acting on S. Moreover, let O be an arbitrary
observable on S. Our goal is to minimize (or maximize)
the expectation of O in the state ρ under the available class
of operations C . Define

RðρÞ ≔ min
E∈C

tr½EðρÞO�: ð21Þ

Let us also define an analogous quantity for when many
copies of ρ are processed collectively, i.e.,

RcolðρÞ ≔ min
E∈C

1

n
tr½Eðρ⊗nÞO⊗n�; ð22Þ
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where now E is a collective operation that acts on n copies of
ρ and O⊗n ≡P

n
i¼1 1=i ⊗ Oi. Very often, RcolðρÞ < RðρÞ;

i.e., processing multiple copies collectively is strictly better
than processing them one by one. Interestingly, the same
improvement in manipulation abilities can be achieved
when using only a single copy of ρ and a suitably chosen
catalyst. This is the content of our next theorem.
Theorem 2: Let ρ be a quantum state and D ∈ C . Then

there is a quantum state ω such that

min
D∈C

tr½Dðρ ⊗ ωÞðO ⊗ 1Þ� ¼ RcolðρÞ; ð23Þ

and, moreover,

tr2½Dðρ ⊗ ωÞ� ¼ ω: ð24Þ

Notice that by taking S ¼ AB, C ¼ LOCCðA∶BÞ, and
O ¼ ϕþ

AB we obtain the catalytic subroutine from the
previous section. Interestingly, the reasoning presented
above is much more general, and to demonstrate this in
Supplemental Material [62] we apply Theorem 2 to the
problem of work extraction in quantum thermodynamics.
As a consequence, it can be shown that catalysis unlocks
the energy contained in a passive state under arbitrary
classes of operations, therefore generalizing the main result
from Ref. [49].
Discussion.—We have introduced an extension of the

standard teleportation protocol, to the case when Alice and
Bob use entangled states in a catalytic way. We showed
that, when arbitrary catalysts are allowed, the teleportation

fidelity can be lower bounded by a regularization of the
standard teleportation fidelity. We then showed that this
regularized quantifier is strictly larger than the standard
teleportation fidelity, therefore demonstrating a genuine
catalytic advantage for a wide range of quantum states.
Quantum teleportation is one of many information-

theoretic protocols whose performance depends directly
on the entanglement fraction of the used resource. Our new
methods (in particular, the catalytic subroutine) can be,
therefore, directly applied to study other protocols whose
performance is quantified using entanglement fraction (see,
e.g., [65–68]).
The generalized version of our catalytic subroutine, in a

certain sense, allows collective effects to be incorporated at
a single-copy level, using appropriately chosen catalysts.
Since quantum advantages generally result from the ability
of processing many quantum states simultaneously, we
hope that the methods described here will lead to interesting
extensions of quantum protocols that enjoy the perfor-
mance of collective processing but using only a few copies
of the resource.
Finally, we believe that catalysis can lead to interesting

extensions of standard quantum resource theories. Since
entanglement fraction can be viewed as one of the Renyi
entropies, it is plausible to expect that correlated catalysis
can be used to selectively increase other Renyi entropies.
This can potentially lead to better performances in various
operational tasks, ranging from standard discrimination
[69–73] up to more exotic variants thereof [74].
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