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Sampling equilibrium ensembles of dense polymer mixtures is a paradigmatically hard problem in
computational physics, even in lattice-based models. Here, we develop a formalism based on interacting
binary tensors that allows for tackling this problem using quantum annealing machines. Our approach is
general in that properties such as self-avoidance, branching, and looping can all be specified in terms of
quadratic interactions of the tensors. Microstates’ realizations of different lattice polymer ensembles are
then seamlessly generated by solving suitable discrete energy-minimization problems. This approach
enables us to capitalize on the strengths of quantum annealing machines, as we demonstrate by sampling
polymer mixtures from low to high densities, using the D-Wave quantum annealer. Our systematic
approach offers a promising avenue to harness the rapid development of quantum machines for sampling

discrete models of filamentous soft-matter systems.
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Introduction.—Despite exciting recent progress [1,2],
present-day quantum computers cannot yet outperform
classical ones in solving challenging physics problems
of general interest. However, the current growth rate of their
performance has triggered a strong effort to design new
algorithmic paradigms for tackling problems that have
proved hard for classical computing, and thus understand
the implied advantages and disadvantages. With its wealth
of problems that are inherently hard computationally,
classical statistical mechanics offers an ideal avenue for
such endeavors. Yet, while the potential of quantum
machines has been extensively explored for quantum
many-body systems [3—13], thus far there have been very
few classical statistical-mechanics applications, mostly in
biophysics contexts [14—18]. On the other hand, it has been
shown that Monte Carlo sampling can in principle enjoy a
quadratic speedup in quantum computers [19]. It is thus
timely to search for high-performance implementations of
sampling problems in present day quantum devices.

In this work, we discuss the use of quantum annealing
machines [20-23] to tackle a paradigmatic statistical
mechanics problem, namely, sampling the equilibrium
ensemble of self-avoiding walks and rings, from dilute
to concentrated solutions.

Generating configurations of self-avoiding polymers is
an algorithmic challenge that has accompanied computa-
tional physics, and contributed to its growth, since its early
days. The gist of the challenge is best illustrated for lattice
embeddings of self-avoiding walks. As their chain length
increases, such paths rapidly become a negligible frac-
tion of all possible walks, thus making it impractical to
sample them by discarding a posteriori self-crossing
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conformations from a collection of random paths. The
efforts that have been spent over decades to overcome this
attrition problem have given rise to powerful general
concepts and methods, from Monte Carlo (MC) with
thermodynamic reweighting [24] to multiple Markov
chains [25].

Elegant methods and strategies are now available to
sample self-avoiding walks [26,27] even of considerable
length [28] and enumerate them in bulk or in compact
phases [29,30]. Nevertheless, efficient sampling of dense
solutions or melts of self-avoiding polymers remains a
major challenge for both MC and molecular dynamics
simulations, because topological constraints create exceed-
ingly long autocorrelation times.

In this work, we introduce a quadratic unconstrained
binary optimization (QUBO) problem to tackle polymer
sampling with quantum annealers. The Hamiltonian is
chosen in such a way that its degenerate classical minima
are in one-to-one correspondence with polymer configu-
rations on a lattice. Independent realizations of polymer
mixtures at any specified density can be obtained by
repeated numerical minimization of the energy function.

In traditional polymer sampling strategies, the length and
number of chains are set in the initial state and preserved
during the subsequent stochastic evolution of the system.
Instead, our QUBO model constrains the total number of
monomers N and the number of bonds L in the system or,
equivalently, the density (i.e., lattice filling fraction) and
number of free chain ends in the mixture (see Fig. 1). The
total number of chains and their lengths can instead
fluctuate around their ensemble averages. Our approach
can be seamlessly used to sample different statistical

© 2021 American Physical Society
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FIG. 1. The QUBO formulation of the sampling problem

allows for generating mixtures of polymers with discrete degrees
of freedom (here schematized for a square lattice embedding) at
fixed number of monomers and free ends. The QUBO problem
complexity is set by the size of the embedding space and thus is
insensitive to its filling fraction.

ensembles by introducing or removing energy penalties,
e.g., for branching or minimum size of admissible loops.

QUBO Hamiltonian.—Our QUBO model is defined in
terms of binary tensors (BTs) of different ranks, with the
tensor indices running over the sites in the embedding
lattice. In a quantum annealing machine, a physical qubit is
assigned to each entry of the BTs. In the logical problem,
the element I'; of the rank-1 BT is associated to the ith site
[Fig. 2(a)]. The elements I';; of the rank-2 BT correspond
to nonoriented bonds between neighboring sites i and j
[Fig. 2(b)]. Analogously, the entries of the rank-3 BT, ',
and the higher order ones are defined in terms of triplets or
multiplets of distinct sites that yield connected paths when
neighboring sites are bridged, see, e.g., Figs. 2(c) and 2(d).
Each tensor entry is a binary variable that assumes the
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FIG. 2. Top row, (a)—(d): representation of the binary tensors,
exemplified for a square lattice. Bottom row, (e)—(g): specific
features or properties of the polymer chains can be specified via
quadratic interactions involving tensors of appropriate rank.

values 1 or O if the corresponding site, bond, or n-plet is
active (occupied) or inactive (empty), respectively.

We show below that by systematically adding suitable
interactions between the tensors it is possible to enforce the
desired physical constraints in the corresponding polymer
ensemble, from the total chain lengths and chain connec-
tivity, to self-avoidance and no branching. The Hamiltonian
formulation provided hereafter is entirely general, though
for simplicity we shall discuss it for square lattice embed-
dings. Importantly, it is formulated to involve at most
quadratic functions of the BTs, as required by current
quantum annealing machines [23].

The simplest polymer ensemble in this framework is
generated by enforcing only the constraints of the total
number of monomers and bonds, and chain connectivity.
This requires only a quadratic Hamiltonian of rank-1 and
rank-2 tensors, Hy = V00 + Vpona + V2, Where

2
Vmon = Amon (Ziri - N) ’ (1)
1 ! 2
Vbond = Abond <§ Zi jrij - L) , (2)

Ay &
V2:7;Fij(l_ri)' (3)

Here and below, all coupling constants are assumed to be

positive. The prime in Z’ denotes summation over distinct
running indices. Upon energy minimization, interaction
Egs. (1) and (2) select polymer mixtures covering L bonds
and N monomers (sites) in total. Term Eq. (3) instead
enforces consistency of the chain connectivity, penalizing
cases where an active bond is flanked by at least one
inactive site [see Fig. 2(e)]. A sample calculation of H is
illustrated in the Supplemental Material [31] (SM).

As shown in Fig. 3(a), minimizing Hy yields mixtures of
lattice animals, a key class of polymers [32—34] relevant in
percolation theory, too.

The degenerate ground-state manifold of H thus
includes configurations that are not self-avoiding and have
branches. Self-intersections and branching are ruled out by
complementing H, with two interaction terms involving
the rank-3 tensor. The first term is

Asa <
Vsa = S'A Z thkrljm7 (4)
i,j.k,l.m

with the proviso that the middle index, j, refers to the interior
site of the corresponding lattice trimer, see Fig. 2(c). The term
in Eq. (4) penalizes cases where two active trimers share the
middle site, a condition realized at crossing and branching
points, see, e.g., Fig. 2(f). In addition, in analogy with Eq. (3),
the consistency of active elements of the rank-3 tensor with
those of lower rank, must be enforced via the following term:
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Examples of the different types of polymer mixtures obtained by minimizing a suitable QUBO Hamiltonian, H at different

values of N and L. Panel (a): minimization of the Hamiltonian H = H, yields mixtures of so-called lattice animals. Panel (b): including
Vga and V3 into the Hamiltonian and setting N = L yields mixtures of rings. Panel (c): Further inclusion of V;  into the Hamiltonian
removes loops of order 4 from sampling. Setting N > L yields mixtures of rings and N — L linear chains. The shown examples are for a
6 x 6 lattice; active sites and bonds are highlighted in color. Here, and for the results of subsequent figures, we set Age = Apong = 1,
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Minimizing the Hamiltonian H = Hy+ Vga + V3
yields the desired mixtures of self-avoiding chains with
no branching. Mixtures exclusively involving ring
polymers are obtained by setting N = L. Typical configu-
rations at different filling fractions of a 6 x 6 square
lattice are shown in Figs. 3(b) and 3(c), see SM for larger
lattices.

Our QUBO Hamiltonian is particularly suitable for being
minimized by quantum annealers, as we discuss below with
a direct application on the D-Wave quantum annealing
machine. We further note that the resource requirements of
the QUBO model are set solely by the number of tensor
elements, and not by the number of active bonds or sites,
and thus dilute and dense mixtures and melts are dealt with
on equal footing. In particular, in straightforward imple-
mentations of the Hamiltonian H, + Vg, + V3 for a square
lattice with n sites per side, the number of required qubits is
7n? — 10n + 4 (see SM). Such implementation takes ad-
vantage of the fact that, for better resource efficiency, only
noncollinear trimers (i.e., two bonds meeting at an angle)
need to be included in interactions involving the rank-3 BT.

Mixtures of rings.—An application of our QUBO
method to sample ring mixtures on a 10 x 10 lattice is
given in Fig. 4. As the fraction of occupied lattice sites
grows, the average number of rings in the mixtures and
their lengths increases too, following the balance of two
entropic terms. The first regards the number of distinct ring
shapes, which grows approximately exponentially with the
ring length, while the second is the rototranslational
entropy. As density increases, it becomes advantageous
to have more rings in the mixture. Indeed, the gain in
rototranslational entropy of many but small rings dominates

over the loss in conformational entropy as compared to
larger but fewer rings.

The sampled mixtures include instances where one or
more rings are fully contained inside larger ones. Figure 4(b)
shows that the probability for any ring to be involved in such
nestings increases steadily with density, even at filling
fractions larger than 0.6, where we find the variation of
average ring length to be limited. This result could be relevant
in more realistic contexts, such as adsorbates of circular DNA
rings [35] or solutions of uncatenated rings [36-38], for
which systematic studies for the incidence of nestings and
threadings (their off-plane generalization) at varying density
are not yet available.

Mixtures with linear chains.—Ring mixtures that include
linear chains can be generated, too. The number of linear
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FIG. 4. (a) Average number of rings and their length in ring

mixtures at varying filling fraction of a 10 x 10 lattice. (b) Prob-
ability that any given ring is involved in one or more nestings. At
each filling density, from 1500 to 3500 samples were obtained by
using a classical simulated annealer to minimize H = Hj +
Vsa + V3 using the same interaction coefficients given in Fig. 3
and with L = N. The inset shows a nesting involving two rings at
0.4 filling fraction.
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chains, n;, can be specified by assigning N = L + n;. The
number of rings in such mixtures, as well as the contour
lengths of the linear and circular chains are, again, con-
trolled by same entropic effects discussed earlier. Low
filling fractions will yield configurations that mostly con-
sist of n; linear chains only, see Fig. 1. Thus, at low density,
setting N =L + 1 will mostly return individual linear
chains of length L. Likewise, with N = L one will mostly
obtain individual rings.

We stress that our QUBO Hamiltonian is naturally
formulated for sampling polydispersed ensembles of rings,
with or without linear chains. However, in principle, it can
be extended to generate mostly or exclusively single rings
and walks even in nondilute conditions. This task can be
accomplished by systematically introducing energy penal-
ties for rings with up to L — 1 bonds, at the cost of
increasing the number of necessary qubits.

As an illustration, we consider the suppression of the
shortest possible rings consisting of four bonds, four loops
in brief. In our approach, this is done by introducing the
following interaction that involves the rank-3 BT:

AL, <
Vio= 51 2 Tl (6)
1,].k,

This term penalizes instances where two noncollinear
active trimers share the two endpoints [see last case of
Fig. 2(f)]. Suppressing such loops boosts the occurrence of
single-component configurations, even in the worst case
scenario of Hamiltonian walks, as shown in the SM.

The elimination procedure can in principle be general-
ized to loops of any size by systematically introducing
interactions with higher-rank BTs, e.g., rank-4 tensors for
six loops as in Fig. 2(g), by using the recursive scheme
reported in the SM. The number of higher-rank BT
elements per lattice site needed to cancel loops of size
2M is expected to grow at most as the number of rooted
self-avoiding walks of length M, which scales as g™ M7~!,
where u is the lattice connective constant and y is the
entropic exponent (for a square lattice y ~2.6 and y ~ 1.3
[39,40]) see SM. For large systems, implementing such
loop cancellation may require a large number of qubits.
Hence, our approach based on quantum annealing and the
Monte Carlo schemes based on classical computing may be
regarded as complementary methods, since they are best
suited and efficient for different ensembles.

Computational performance of quantum annealing.—To
solve our QUBO problem using a quantum annealing
machine, each entry of the BTs is assigned to a qubit.
In the standard setting [20-23], the qubits are initialized in
the ground state of an easily solvable Hamiltonian H;, that
does not commute with H. Then, the system’s Hamiltonian
is gradually changed with time, ¢, according to a given
schedule H(t) = a(t)H;, + b(t)H. The functions a(¢) and
b(t) are chosen so that a(0) = 1 and 5(0) = 0, while at the

end of the protocol, # = fyeep, ONE has a(tyyeep) = 0 and
b(tsweep) = 1. The adiabatic theorem ensures that if the
sweep H;, — H is sufficiently slow, the final state is the
classical ground state of H, i.e., the solution of our QUBO
problem. In a classical approach to our QUBO problem
(based on standard simulated annealing) changes in the
binary variables are accepted with the Metropolis criterion
and the system’s nominal temperature is gradually lowered.

By construction, the ground state energy of our QUBO
Hamiltonian is known a priori to be equal to 0. We used
this property to compare the efficiency at minimizing H, of
present-day hybrid quantum annealers and fully-classical
simulated annealing approaches. For an equal footing
comparison, we used the fully classical QUBO solver
(based on classical simulated annealing) and the hybrid
solver (combining quantum and classical annealing) that
are available on the D-Wave machines to minimize the
Hamiltonian H( + Vg5 + V3 at maximum filling for latti-
ces of different size. We used default settings for the
annealers and at each system size, computed the runtime
71/, required to achieve a 50% minimization success rate.
The dependence of 7;,, on system size for the two
annealers is reported in Fig. 5.

For the addressed lattice sizes, the observed effective
scaling of the hybrid annealer run-time versus system size
(i.e., number of monomers) is N*2, which brings a
significant speed up compared to scaling of the classical
annealer available from D-Wave, which is N°2.

While the polymer mixture ensembles have no strict
analog with those addressed in conventional stochastic
sampling, we note that for general purpose simulation
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FIG. 5. Performance of the D-Wave hybrid combination of

classical and quantum simulated annealers and the fully classical
one at minimizing the QUBO Hamiltonian H = Hy + Vgp + V3
at maximum filling of square lattices with total of N sites. For
each value of N, we report 7;,, the run time providing a 50%
success rate of reaching the ground state. See Supplemental
Material and Fig. S4 for the determination of 7,/, and the
heuristic estimate of its confidence interval. The interpolating
curves are power-law best fits to the data, and the exponents are
42402 and 52 +0.2 for the hybrid and classical cases,
respectively.

080501-4



PHYSICAL REVIEW LETTERS 127, 080501 (2021)

strategies the autocorrelation time of dense polymeric
systems is expected to scale as N° (from the combination
of the cubic growth of the reptation time chains length, N,
and the quadratic cost of computing steric interactions).
The observed scaling of the quantum annealers compares
well with such term of reference, even though no attempt
was made to optimize the number of variables and their
interactions, nor the energy gap between ground and
excited states. In addition, the sizes of the systems currently
addressable with hybrid annealers (N ~ 350), see Fig. 5, are
not far from those used in conventional sampling of densely
packed lattice polymers (N ~ 2000 [41]).

Finally, we compared the sampling of hybrid and fully
classical annealers on 10 x 10 lattices at full filling, without
observing significant differences, see Fig. S5.

Conclusions and outlook.—Applications of quantum
computing to polymer physics have been few and, to
our knowledge, mostly directed at lattice models of proteins
for identifying the lowest-energy state of a given sequence
[15-18]. In these elegant studies, however, the conforma-
tional space was not sampled, but exhaustively enumerated
in advance, a feat that becomes formidable as chain length
increases. In contrast, in this work, we presented a
systematic theoretical framework to sample equilibrium
ensembles of lattice polymer mixtures at any density.

Different physical properties, such as self-avoidance or
branching, can be selected for by simply switching on or off
suitable sets of interactions in a QUBO Hamiltonian. In
specific applications, our general approach may be refined
in order to reduce the number of required qubits, as
illustrated in the SM, which also includes Refs. [42.43].
Our QUBO formulation is particularly suitable for sam-
pling polydispersed ring melts. Our first benchmark com-
putations on a D-Wave quantum annealer indicate a benign
polynomial scaling with system size that compares well
with the performance of conventional algorithms in com-
parable scenarios. We thus expect that the accelerating pace
of quantum computing innovation will make it possible to
extend our approach to more refined and larger scale
models, and thus tackle challenging several systems that
are of current interest. These include polymer melts where
topological constraints and threadings, which generalize
the nestings of Fig. 4, can hinder the system evolution and
hence sampling within traditional simulation schemes.

In addition, while in this first study we focused on fully
flexible homopolymers, an interesting development would
be to extend our approach to semiflexible chains, and to
heteropolymers. We envisage that these extensions might
profit by combining quantum QUBO solvers with thermo-
dynamic reweighting strategies performed on classical
computers.

Finally, we note that sampling applications with quan-
tum annealers have been discussed before in machine
learning and other contexts [44-51]. Thus, we hope that
our work can also inspire follow-up investigations

connecting the present scheme and such studies, as well
as implementations on different quantum computing para-
digms [52] such as Grover’s search algorithm [53], quan-
tum Metropolis sampling [54], or quantum approximate
optimization algorithms (QAOA) [55].
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