
Experimental Detection of the Correlation Rényi Entropy in the Central Spin Model
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We propose and experimentally measure an entropy that quantifies the volume of correlations among
qubits. The experiment is carried out on a nearly isolated quantum system composed of a central spin
coupled and initially uncorrelated with 15 other spins. Because of the spin-spin interactions, information
flows from the central spin to the surrounding ones forming clusters of multispin correlations that grow in
time. We design a nuclear magnetic resonance experiment that directly measures the amplitudes of the
multispin correlations and use them to compute the evolution of what we call correlation Rényi entropy.
This entropy keeps growing even after the equilibration of the entanglement entropy. We also analyze how
the saturation point and the timescale for the equilibration of the correlation Rényi entropy depend on the
system size.
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Which microscopic entropy can capture the changes
undergone by an isolated quantum system that evolves in
time? The von Neumann entropy for the entire density
matrix of the system is not an appropriate choice, because it
is constant in isolated systems. A common approach is to
trace out part of the system and resort to the entanglement
entropy, which quantifies the degree of entanglement
between the traced-out part and the remaining subsystem.
Despite the challenges presented by this quantity, it has
been experimentally measured in a system with three
superconducting qubits after tomographically reconstruct-
ing the evolved density matrix [1], in a Bose-Hubbard
system with six cold atoms and site-resolved number
statistics [2], and in a chain with 20 trapped ions where
the entropy of subsystems with up to ten ions is obtained
through randomized measurements [3]. The entanglement
entropy is bounded by the quantum Fisher information, and
this quantity also offers a way to detect the flow of
information [4,5]. It has been experimentally measured
with trapped ions [6] and in nuclear magnetic resonance
(NMR) [7].
Another entropy that has received more theoretical than

experimental attention is the participation Rényi entropy,
which measures the spread in time of a nonstationary state
in the Hilbert space. The system is usually prepared in a
certain basis vector, and the entropy is computed by
summing the squares of the probabilities for finding the
system in its initial quantum state and in each one of the
other basis vectors [8]. Common questions that are
addressed with both the participation Rényi entropy and
the entanglement entropy include the conditions for linear

or logarithmic growth in association with quantum chaos
[9–13] or the transition to many-body localization [14–18],
comparisons between their saturation values and thermo-
dynamic entropies in studies of thermalization [2,19], and
analytic predictions for the spread of entanglement [20–
23]. One of the differences between the two entropies is that
the participation Rényi entropy is extensive in the Hilbert
space size of the composite system, while the maximum
value of the entanglement entropy does not change if the
size of the subsystem remains fixed.
In this Letter, we propose a third alternative that we

measure employing NMR coherence detection techniques.
NMR has been used to investigate questions in many-body
quantum dynamics, such as many-body localization [24],
prethermalization [25,26], and the scrambling of quantum
information [7,27,28]. Our experiment demonstrates that
NMR platforms are also test beds for the analysis of
entropy growth.
Our entropy quantifies the growth of the volume of

correlations as information flows from a central spin (qubit)
to its surrounding spins. As devices with ever larger
numbers of qubits become operational, a detailed picture
of how quantum information flows and how the dynamics
saturates is essential for designing and controlling quantum
processors. This understanding is also necessary for
classical simulations, which become impracticable under
a substantial growth of correlations.
In our sample, the central spin is initially polarized and

coupled with 15 unpolarized surrounding spins. This
composite system is at room temperature and nearly
isolated from external environments. The experiment
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employs twomain ingredients available to solid-state NMR.
One is the possibility to coherently average out the inter-
actions among the surrounding spins, so that the remaining
effectiveHamiltonian contains only the interactions of those
spins with the central one. Because of these couplings, as we
sketch in Fig. 1, information that is initially concentrated in
the central spin (orange circle) flows to the surrounding
spins and gives rise to clusters of multispin correlations
(shades) that grow in time. The second important element of
the experiment is the possibility to collectively rotate the
spins and perform a basis transformation that allows us to
monitor the growth of multispin correlations by probing
only the central spin [7,29,30].
Multispin correlations were used in Ref. [24] to measure

the average correlation length and estimate the entangle-
ment entropy in spin chains. Here, we use the amplitudes of
the multispin correlations to compute what we call corre-
lation Rényi entropy. We find that after the saturation of the
entanglement entropy, the correlation Rényi entropy keeps
growing for times 1 order of magnitude longer, during
which the larger clusters of multispin correlations build up.
The experimental results show excellent agreement with
our numerical simulations. We also perform a scaling
analysis of the growth rate, the saturation value, and the
equilibration time of the correlation Rényi entropy. Both
the rate and the saturation point grow logarithmically as the
size of the composite system increases, while the equili-
bration time is nearly independent of system size.
Experimental System.—We work with a polycrystalline

solid made of an ensemble of triphenylphosphine mole-
cules. Each molecule has a central 31P nuclear spin coupled
to 1H spins via the heteronuclear dipolar interaction

HCSB ¼
XN
j

ωjσ
CS
z ⊗ σjz ⊗ 1⊗N−1; ð1Þ

where CSB stands for the composite system made of the
central spin (CS) and a finite bath (B) with N ¼ 15

surrounding spins, and σjz is the Pauli matrix for the jth
bath spin. The coupling constants ωj are determined by the
orientation and the distance of the bath spins from the
central spin, the majority having values below 1200 Hz (see
distribution in [7]).

The initial density matrix of the composite system is
ρð0Þ ¼ ρCSð0Þ ⊗ ρBð0Þ. Quantum information resides
initially in the central spin, which is in the state
ρCSð0Þ ¼ ð1þ ϵσxÞ=2, where ϵ ∼ 10−5 is the nuclear spin
polarization at room temperature, while the surrounding
spins are in a fully mixed state ρBð0Þ ¼ ð1=2Þ⊗N . The
homonuclear dipolar interactions among the bath spins are
averaged out by applying the MREV-8 pulse sequence,
which is named after Mansfield, Rhim, Elleman and
Vaughan [31–33]. During the entire time span of our
experiment, the effects of external environments are also
under control [7], so that the evolution of the density matrix
of the composite system, ρðTÞ ¼ UCSBðTÞρð0ÞU†

CSBðTÞ, is
effectively described by the unitary propagator
UCSBðTÞ ¼ e−iHCSBT . As the CSB system evolves under
the ZZ interaction, information from the central spin gets
shared with the bath spins giving rise to clusters of
multispin correlations.
FID and Entanglement Entropy.—The loss of informa-

tion from the central spin can be quantified with the free
induction decay (FID). For a single molecule, it is given by

FIDðTÞ¼TrfσCSx ρCSðTÞg¼ ϵ

2Nþ1

X2Nþ1

k¼1

cosð2hφkjHCSBjφkiTÞ;

ð2Þ
where ρCSðTÞ ¼ TrB½ρðTÞ� and jφki is one of the 2Nþ1 spin
configurations in the z direction, such as j↑↓↓…↑i.
The total NMR signal is induced by an ensemble of

molecules with typically more than 1017 spins. The
normalized total signal is obtained by setting ϵ to 1 and
is therefore what we would obtain also with a fully
polarized central spin, where ρCSð0Þ ¼ ð1þ σxÞ=2.
The results from numerical simulations for N ¼ 15 are

shown in Fig. 2(a). Thin lines correspond to representative
random orientations of the molecules, and the thick curve
gives the average of 300 random realizations of the
principle axis orientation of the molecule [34]. The curve
for the ensemble average is smooth and quickly saturates
at F̄ ∼ 0.
The entanglement entropy between the central spin and

the bath is a function of the FID,

SentðTÞ ¼ −TrfρCSðTÞ log2½ρCSðTÞ�g
¼ −½fþðTÞ log2 fþðTÞ þ f−ðTÞ log2 f−ðTÞ�; ð3Þ

where f�ðTÞ ¼ ð1=2Þ � FIDðTÞ=2. For the weakly polar-
ized central spin of our experiment, the entanglement
entropy shows a minor change from Sentð0Þ ∼ 1 − ϵ2=2
to SentðT ≫ 0Þ ∼ 1. However, to provide a more general
comparison between SentðTÞ, FIDðTÞ, and our entropy, we
show in Fig. 2(b) the entanglement entropy obtained with a
fully polarized central spin. Similarly to the FID, SentðTÞ
evolves quickly and then saturates at the maximum entropy
value S̄ent ∼ 1. For both quantities, the saturation of the

FIG. 1. Schematic illustration of the flow of information
initially contained in the central spin (orange circle) to the
surrounding 15 spins. Each shaded area indicates a cluster of
correlated spins.
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dynamics happens at T ∼ 200 μs. In Fig. 2(b), we also
show with dotted lines ensemble averages for N ¼ 10 and
N ¼ 20. The slope of SentðTÞ increases with system size,
which suggests that the saturation should happen earlier for
larger spin baths. In what follows, we compare these
timescales with the saturation time obtained for the
correlation Rényi entropy.
Multispin Correlations.—The evolution of the total

density matrix is given by

ρðTÞ ¼ e−iHCSBTρð0ÞeiHCSBT

¼ ρð0Þ þ iT½ρð0Þ; HCSB�

−
T2

2
f½ρð0Þ; HCSB�; HCSBg þ � � � : ð4Þ

The commutators above lead to terms with a different
number m of nonidentity bath spins operators. By arrang-
ing these terms together, ρðTÞ for a single molecule is

ρðTÞ¼ 1

2Nþ1

�
1⊗Nþ1þϵCz

0ðTÞσCSx ⊗1⊗N

þϵ
XN
j

CzðjÞ
1 ðTÞσCSy ⊗σjz⊗1⊗N−1

þϵ
XN
j1<j2

Czðj1j2Þ
2 ðTÞσCSx ⊗σj1z ⊗σj2z ⊗1⊗N−2þ���

�
;

ð5Þ

where Czðj1;j2;…;jmÞ
m is the amplitude of the clusters

with the same m (see a detailed example for N ¼ 2 in
Supplemental Material [34]). At T ¼ 0, Cz

0ð0Þ ¼ 1 and

Czðj1;j2;…;jmÞ
m≠0 ð0Þ ¼ 0. For T > 0, the amplitudes for the

terms with m > 0 increase, indicating that clusters of
correlated spins build up and grow.
The uncorrelated term with amplitude Cz

0ðTÞ is the only
one that survives the partial trace used to obtain ρCSðTÞ in
Eq. (2) and therefore the only one that contributes to
FIDðTÞ. This is also the case for the entanglement entropy,
since both quantities are related [Eq. (3)]. The decay of
Cz
0ðTÞ describes the loss of information from the central

spin, which causes the decline of the observable NMR
signal and the growth of the entanglement entropy.
However, to better understand the dynamics of the
composite system, one needs a quantity that also captures
the buildup of multispin correlations as determined by the
higher order terms with m > 0.
The NMR experiment is designed to measure the cohe-

rence order intensities. To explain what this means and how
the measurement is done, let us write the bath spin opera-
tors in Eq. (5) in terms of coherence raising and lowering
operators in the x-quantization basis σx� ≔ ðσy � iσzÞ=

ffiffiffi
2

p

[35]. The term σCSx σj1z σ
j2
z , for example, expands into

four terms, −1=2fσCSx σxj1þ σxj2þ þσCSx σxj1− σxj2− −σCSx σxj1þ σxj2− −
σCSx σxj1− σxj2þ g. The difference between the number nþ of σxþ
operators and the number n− of σx− operators defines the
coherence order n ¼ nþ − n−. Therefore, the first one of
those four terms above has coherence order n ¼ 2, the
second one has n ¼ −2, and the last two have n ¼ 0.
According to the coherence orders, Eq. (5) becomes

ρðTÞ ¼ 1

2Nþ1

�
1⊗Nþ1 þ ϵ

X
k

Cx;k
0 ðTÞρx;k0

þ ϵ
X
k

½Cx;k
þ1ðTÞρx;kþ1 þ Cx;k

−1ðTÞρx;k−1 �

þ ϵ
X
k

½Cx;k
þ2ðTÞρx;kþ2 þ Cx;k

−2ðTÞρx;k−2 � þ � � �
�
; ð6Þ

where ρx;kn represents each term with coherence order n (see
Supplemental Material [34]). Our experiment directly
measures the intensities jCx

nðTÞj2 ¼
P

k jCx;k
n ðTÞj2.

The essence of the coherence detection technique is to
exploit the collective response of the spins. At time T, we
apply the encoding pulse RxðϕÞ ¼ exp ðiðϕ=2ÞPj 1

CS ⊗
11 ⊗ � � � ⊗ σjx ⊗ � � � ⊗ 1NÞ that collectively rotates the
bath spins by an angle ϕ [29,30,36]. The purpose of this
operation is to encode each coherence order in a phase
factor einϕ (see Supplemental Material [34]). Subsequently,
the CSB dynamics is reversed by applying a π pulse to the
central spin, and the composite system is evolved for
another interval T. After the echo, the resulting density
matrix at 2T is [34]
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ρϕð2TÞ¼
1

2Nþ1

�
1⊗Nþ1þϵ

XN
n¼−N

einϕjCx
nðTÞj2σCSx ⊗1⊗N

�
;

ð7Þ

and the observed NMR signal for a single molecule is
Sð2TÞ ¼ Tr½TrB½ρϕð2TÞ�σCSx �. Just as in the case of FIDðTÞ,
the total signal is obtained for a large ensemble of
molecules.
The signal is recorded for various increments of rotation

angle ϕ ∈ ½0; 2π�. By performing a Fourier transform of
this array of observed signals, we obtain the intensities
jCx

nðTÞj2, with
P

N
n¼−N jCx

nðTÞj2 ¼ 1. Note that the NMR
experiment is designed so that all the information about the
coherence orders is contained in the central spin, which is
the only spin experimentally probed.
The evolution of the coherence orders’ intensities is

shown in Fig. 3(a). The agreement between the experi-
mental data and the numerical simulations for orders up to
n ¼ −6, 6 is excellent. Higher order terms develop at even
longer times and are more challenging to detect exper-
imentally. This figure reveals the details of how information
lost from the central spin gets shared with the surrounding
qubits.

Correlation Rényi Entropies.—We use the coherence
order intensities jCx

nðTÞj2 to compute the correlation Rényi
entropy. The first and second order correlation Rényi
entropies are respectively defined as

S1 ¼ −
XN
n¼−N

jCx
nðTÞj2 log2 jCx

nðTÞj2; ð8Þ

S2 ¼ − log2

�XN
n¼−N

jCx
nðTÞj4

�
: ð9Þ

They describe the growth of multispin coherences. The
absence of correlations implies that Smin

1 ¼ Smin
2 ¼ 0, while

the homogeneous distribution of coherence orders, that is,
jCx

nðTÞj2 ¼ ð2N þ 1Þ−1, leads to the maximum value,
Smax
1 ¼ Smax

2 ¼ log2ð2N þ 1Þ.
The experimental data for both entropies are compared

with numerical simulations in Fig. 3(b). One sees that the
growth of S1;2 is not complete during the timescale of our
experiment. The correlation Rényi entropy keeps increas-
ing for T > 500 μs, implying that the growth of the volume
of correlations has not yet ceased and correlations of higher
orders are still developing. In fact, as the simulations for
different bath sizes in the inset of Fig. 4(a) indicate,
saturation happens at T ∼ 2000 μs. This contrasts with
the entanglement entropy displayed in Fig. 2(b), where the
curves are already flat for times 1 order of magnitude
shorter, at T ∼ 200 μs.
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The discrepancy between the timescales for the equili-
bration of S1;2 and Sent motivated us to have a closer look at
the saturation of the entanglement entropy. By significantly
increasing the scale in the y axis of Fig. 2(b), we observe in
the inset that Sent for different bath sizes actually keeps
increasing for T > 200 μs. It is only because we have a
detailed picture of the growth of the volume of correlations,
that we could have expected the existence of this residual
increase. The evolution of the entanglement entropy, just as
the FID, reflects the loss of information from the central
spin, as characterized by the decay of Cz

0ðTÞ, and this decay
happens simultaneously with the growth of the higher order
correlations. While the necessary precision to detect the
growth of Sent for T > 200 μs would be experimentally
unreachable, the experimental increase of the Rényi entro-
pies S1;2 at these timescales is evident in Fig. 3(b).
Equilibration.—The complete saturation of the correla-

tion Rényi entropy takes place once the clusters of
correlated spins stop growing, that is, when the coherence
orders’ intensities become constant, as seen in the inset of
Fig. 3(a). To estimate the timescale for the equilibration and
how it depends on the bath size, we study numerically in
Fig. 4(a) the evolution of S2 for baths ranging from N ¼ 5
to N ¼ 30.
We compute the saturation value of the entropy, S̄2, by

averaging the values of S2ðTÞ for T > 5000 μs, when the
curves are clearly flat, as seen in the inset of Fig. 4(a). We
then obtain the equilibration times Teq by verifying where
each numerical curve of S2ðTÞ first crosses its satura-
tion point. We find that Teq ¼ ð2052.1� 163.7Þ μs for
N ¼ 5;…; 30.
The fact that Teq is nearly independent of the system size

happens because both the growth rate of S2ðTÞ and its
saturation value scale as lnðNÞ. This is verified by fitting
the evolution of S2 in the interval 50 μs < T < 300 μs with
the logarithmic function αþ β log2ðxÞ, where α and β are
fitting constants. The fitting improves for larger system
sizes, and we find that the factor β increases as lnðNÞ, as
shown in Fig. 4(b). And the scaling analysis in Fig. 4(c)
confirms that S̄2 also increases as lnðNÞ.
Conclusion.—We introduced and experimentally mea-

sured the correlation Rényi entropy. This is a novel entropy
measure that relies on the volume of multispin correlations.
While the entanglement entropy Sent quantifies the loss of
information from the central spin, the correlation Rényi
entropy S1;2 provides a more detailed picture of the
dynamics of the composite system by capturing how that
information gets shared between the central spin and the
bath spins through the correlations. Most notably, S1;2
saturates at a time that is 1 order of magnitude larger than
the saturation time for Sent.
The correlation Rényi entropy opens interesting per-

spectives for the experimental detection of many-body
correlations growth and the spread of quantum information
in quantum devices. The experimental resources needed to

measure this entropy scales linearly with the size of the
composite system, and the only requirements are that the
evolution Hamiltonian can be inverted and that the spins
can be collectively rotated. We also expect applications in
quantum error correction codes, where information is
encoded in long-range quantum many-body states, and
in the detection of the propagation speed of correlations.
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Rényi entanglement entropy via randomized measurements,
Science 364, 260 (2019).

[4] X.-M. Lu, X. Wang, and C. P. Sun, Quantum fisher
information flow and non-markovian processes of open
systems, Phys. Rev. A 82, 042103 (2010).

[5] M. Gärttner, P. Hauke, and A. Maria Rey, Relating Out-of-
Time-Order Correlations to Entanglement via Multiple-
Quantum Coherences, Phys. Rev. Lett. 120, 040402 (2018).

[6] J. Smith, A. Lee, P. Richerme, B. Neyenhuis, P. W. Hess, P.
Hauke, M. Heyl, D. A. Huse, and C. Monroe, Many-body
localization in a quantum simulator with programmable
random disorder, Nat. Phys. 12, 907 (2016).

[7] M. Niknam, L. F. Santos, and D. G. Cory, Sensitivity of
quantum information to environment perturbations mea-
sured with a nonlocal out-of-time-order correlation function,
Phys. Rev. Research 2, 013200 (2020).

[8] V. V. Flambaum and F. M. Izrailev, Entropy production and
wave packet dynamics in the fock space of closed chaotic
many-body systems, Phys. Rev. E 64, 036220 (2001).

[9] C. T. Asplund and A. Bernamonti, Mutual information after
a local quench in conformal field theory, Phys. Rev. D 89,
066015 (2014).

[10] E. Bianchi, L. Hackl, and N. Yokomizo, Linear growth of
the entanglement entropy and the kolmogorov-sinai rate,
J. High Energy Phys. 03 (2018) 25.

[11] L. F. Santos, F. Borgonovi, and F. M. Izrailev, Chaos and
Statistical Relaxation in Quantum Systems of Interacting
Particles, Phys. Rev. Lett. 108, 094102 (2012).

[12] L. Vidmar and M. Rigol, Entanglement Entropy of Eigen-
states of Quantum Chaotic Hamiltonians, Phys. Rev. Lett.
119, 220603 (2017).

PHYSICAL REVIEW LETTERS 127, 080401 (2021)

080401-5

https://doi.org/10.1038/nphys3830
https://doi.org/10.1126/science.aaf6725
https://doi.org/10.1126/science.aau4963
https://doi.org/10.1103/PhysRevA.82.042103
https://doi.org/10.1103/PhysRevLett.120.040402
https://doi.org/10.1038/nphys3783
https://doi.org/10.1103/PhysRevResearch.2.013200
https://doi.org/10.1103/PhysRevE.64.036220
https://doi.org/10.1103/PhysRevD.89.066015
https://doi.org/10.1103/PhysRevD.89.066015
https://doi.org/10.1007/JHEP03(2018)025
https://doi.org/10.1103/PhysRevLett.108.094102
https://doi.org/10.1103/PhysRevLett.119.220603
https://doi.org/10.1103/PhysRevLett.119.220603


[13] F. Borgonovi, F. M. Izrailev, and L. F. Santos, Exponentially
fast dynamics of chaotic many-body systems, Phys. Rev. E
99, 010101(R) (2019).

[14] M. Žnidarič, T. Prosen, and P. Prelovšek, Many-body
localization in the Heisenberg XXZ magnet in a random
field, Phys. Rev. B 77, 064426 (2008).

[15] J. H. Bardarson, F. Pollmann, and J. E. Moore, Unbounded
Growth of Entanglement in Models of Many-Body Locali-
zation, Phys. Rev. Lett. 109, 017202 (2012).

[16] E. J. Torres-Herrera and L. F. Santos, Extended nonergodic
states in disordered many-body quantum systems, Ann.
Phys. (Amsterdam) 529, 1600284 (2017).

[17] A. Lukin, M. Rispoli, R. Schittko, M. Eric Tai, A. M.
Kaufman, S. Choi, V. Khemani, J. Léonard, and M. Greiner,
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