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We consider state-aggregation schemes for Markov chains from an information-theoretic perspective.
Specifically, we consider aggregating the states of a Markov chain such that the mutual information of the
aggregated states separated by T time steps is maximized. We show that for T ¼ 1 this recovers the
maximum-likelihood estimator of the degree-corrected stochastic block model as a particular case, which
enables us to explain certain features of the likelihood landscape of this generative network model from a
dynamical lens. We further highlight how we can uncover coherent, long-range dynamical modules for
which considering a timescale T ≫ 1 is essential. We demonstrate our results using synthetic flows and
real-world ocean currents, where we are able to recover the fundamental features of the surface currents of
the oceans.
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Systems comprising the interactions of many entities
often exhibit complex dynamics that unfold within a large
state space. A powerful idea to tame this complexity is to
project the system state xt at each time t onto a significantly
smaller space and replace the original dynamics, say, of the
form xtþ1 ¼ fðxt; xt−1;…Þ, with the simpler dynamics
ytþ1 ¼ gðyt; yt−1;…Þ of the projected state yt. Such tech-
niques abound in physics and other fields under headings
such as model order reduction, coarse graining, variable or
state aggregation, mode decomposition, or dimensionality
reduction [1–11].
The success of these methods hinges on the choice of a

projection yt ¼ hðxtÞ that retains the salient features of the
original dynamics. For example, for a linear dynamics, a
small subspace spanned by its dominant, low-frequency
eigenmodes governs the long-term behavior. The neglected
eigenmodes correspond to high-frequency modes describ-
ing short-lived transients. Projecting xt onto the slow
eigenmodes yields a system description yt with theoretical
guarantees on the reconstruction error of the original
dynamics [8,11,12]. Accordingly, spectral techniques such
as generalized Perron cluster cluster analysis (GenPCCA)
[13], which extract the dominant subspaces of a dynamics,
have been proposed to address the problem of state
aggregation. In other situations, we may also prefer to
extract nondominant eigenvectors corresponding to
medium or fast timescales [14–16].
Here, we consider a stationary Markov process on a

discrete state space X and explore information-theoretic
strategies to find state aggregations that are akin to a
nonlinear version of choosing between the slow and fast
frequency modes. Given a state aggregation yt ¼ hðxtÞ, we

study the time-lagged mutual information IT between the
new state variables yt and ytþT for any timescale T. We call
IT the autoinformation of the state aggregation scheme.
Related information-theoretic ideas include influential
works such as the information bottleneck method [17],
approaches from computational mechanics [18], or the map
equation [9] (see the Supplemental Material (SM) [19] for a
discussion of related methods).
We demonstrate that our approach offers a fresh per-

spective on the problem of state aggregation. Specifically,
we show that maximizing the autoinformation for unit
timescales (T ¼ 1) is, under certain conditions, equivalent
to maximizing the likelihood of a degree-corrected sto-
chastic block model (DCSBM) [45,46], a popular tech-
nique to recover community structure in networks [47–49].
Leveraging our dynamical perspective, we can thus pin-
point problems inherent to assumptions underlying the
DCSBM. We further show how the time parameter T of the
autoinformation leads to a nonlinear transformation miti-
gating these problems. Our scheme is thus particularly
relevant for the analysis of trajectory data with trends
emerging over longer timescales, which we illustrate by
analyzing an ocean drifter dataset where we can reveal
dominant patterns such as ocean currents over long
timescales.
Autoinformation between aggregated states.—Consider

a state aggregation yt ¼ hðxtÞ that maps the discrete state
xt ∈ X from a space of cardinality jX j ¼ N onto a new
state yt ∈ Y in a smaller space of size jYj ¼ K ≤ N. This
induces a partition of X into “aggregation classes”: sets of
states in X mapped to the same aggregated state in Y.
Applying the mapping h to each observed state xt of the

PHYSICAL REVIEW LETTERS 127, 078301 (2021)

0031-9007=21=127(7)=078301(7) 078301-1 © 2021 American Physical Society

https://orcid.org/0000-0003-0706-3007
https://orcid.org/0000-0003-2426-6404
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.127.078301&domain=pdf&date_stamp=2021-08-12
https://doi.org/10.1103/PhysRevLett.127.078301
https://doi.org/10.1103/PhysRevLett.127.078301
https://doi.org/10.1103/PhysRevLett.127.078301
https://doi.org/10.1103/PhysRevLett.127.078301


original trajectory yields a new trajectory that can be
described by a stochastic dynamical system ytþ1 ¼
gðyt; y½t−1∶−∞�Þ. Here, the symbol y½τ1;τ2� denotes the
sequence of states yτ1 ;…; yτ2 from τ1 until τ2.
To find an aggregation yt ¼ hðxtÞ whose states are

informative about the evolution of the dynamics at the
next time step, we seek a mapping h for which the mutual
information Iðytþ1; ytÞ is as high as possible. It involves
two terms of opposite signs:

Iðytþ1; ytÞ ¼ Iðytþ1; y½t;−∞�Þ − Iðytþ1; y½t−1;−∞�jytÞ: ð1Þ

Maximizing Iðytþ1; y½t;−∞�Þ favors state aggregations that
are as deterministic (or predictable) as possible.
Minimizing Iðytþ1; y½t−1;−∞�jytÞ, however, leads to aggre-
gations that are as Markovian as possible. Indeed, this term
quantifies how much yt deviates from a Markov process
[50]: it is zero for a Markov process and positive otherwise.
Note that even if xt is a Markov process, the aggregated
system yt ¼ hðxtÞ is not Markov in general; it is Markov if
and only if the aggregation classes form a so-called
lumpable partition of the transition matrix; see the SM [19].
We view Eq. (1) as a nonlinear counterpart to the unit

time-lag linear autocorrelation of real-valued time series,
which is pivotal for analyzing observables of linear
dynamical systems, e.g., in signal processing or in the
context of the fluctuation-dissipation theorem. Therefore,
we call Iðytþ1; ytÞ the one-step autoinformation of the
aggregated process. By the same rationale, we define the
(T-step) autoinformation of the state aggregation h as

ITðhÞ ≔ I(hðxtþTÞ; hðxtÞ) ¼ IðytþT ; ytÞ ð2aÞ

¼ HðytÞ −HðytþT jytÞ; ð2bÞ

where HðytÞ ¼ HðytþTÞ is the Shannon entropy of the
aggregated state variables. Writing the autoinformation as
the difference of conditional entropies highlights that it is
maximized by an aggregated Markov chain with (i) a high
number of approximately equiprobable states that maxi-
mizeHðytÞ and (ii) a low uncertaintyHðytþT jytÞ associated
with the prediction of ytþT based on state yt.
Maximizing autoinformation as state-aggregation

scheme.—The above discussion suggests maximizing the
autoinformation ITðhÞ over all possible state aggregations
h as a possible scheme to obtain a reduced order descrip-
tion. Let us first explore the case in which we are given a
desired cardinality K of the aggregated state space Y, i.e.,
we look for a partition of X into K aggregation classes.
Denoting the space of all possible mappings to K states as
HK , we arrive at the following optimization problem to
obtain a state aggregation ĥT :

ĥT ¼ arg max
h∈HK

ITðhÞ ¼ arg max
h∈HK

IðytþT ; ytÞ: ð3Þ

To gain intuition, consider Eq. (3) when xt is a simple
random walk process on an unweighted, undirected graph.
Then, finding an optimal state aggregation is equivalent to
finding an optimal partition of the nodes.
Figure 1 displays a simple state transition graph of a

Markov chain with two cyclelike subparts connected by a
single link. The cycles have even length and are constructed
such that the graph is also almost bipartite. Let us now
consider the problem of finding a state aggregation of this
chain in K ¼ 2 classes using autoinformation. The auto-
information associated with both aggregation classes is
qualitatively similar: at each time step, the walker will
likely both (i) change node type with respect to the (almost)
bipartite structure and (ii) stay in the same cyclic structure.
At short timescales, HðytþT jytÞ ≈ 0 for both structures, and
the HðytÞ term in Eq. (2b) dominates. Accordingly, the
bipartite partition, with slightly higher HðytÞ ≈ 1, is pre-
ferred. For longer timescales, however, the second term of
Eq. (2b) dominates, and the two-cycle partition is preferred:
there is a smaller probability of leaving each cycle than of
changing the bipartite aggregation class (see Fig. 1).
Relationships to the degree corrected stochastic block

model.—A direct computation shows that optimizing
Eq. (3) for T ¼ 1 is (coincidentally) equivalent to
solving a maximum-likelihood estimation problem for
the DCSBM with K classes [45,46]. More precisely,
ĥT¼1¼ argmaxlDCSBMðAÞ, where A ¼ ½Aij� ∈ f0; 1gN×N

is the binary adjacency matrix of the graph and lDCSBM
is the log-likelihood function of the DCSBM with model
parameters given by their maximum-likelihood estimates
(for a formal proof, see the SM).
The above result emphasizes that only paths of length 1

(edges) are essential to the likelihood function of the
DCSBM, which derives from the mutual independence

FIG. 1. Transition graph of a Markov chain with two alternative
aggregations (inset schematic not of original size): an “assorta-
tive” split into two almost regular cyclic structures and a
“disassortative,” almost bipartite split. The black edges exemplify
the linking pattern. Two additional edges (red) break the bipartite
symmetry and one joins the two cycles (green). The auto-
information results are shown for N ¼ 120þ 240 nodes with
average degree hki ¼ 10.02. At short and long timescales,
autoinformation is optimized in the bipartite or the assortative
partition, respectively.
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of edges in a DCSBM. Interpreting the maximum-like-
lihood estimation for the DCSBM dynamically in terms of
the autoinformation highlights this as a potential problem
when fitting DCSBMs to graphs with long-range path
structures. Indeed, since optimizing autoinformation for
T ¼ 1 for K ¼ 2 amounts to fitting a two-group DCSBM,
Fig. 1 shows that the two-cycle split would be missed when
fitting such a graph via a DCSBM. Our dynamical stand-
point sheds light on the underlying issue: when only
considering trajectories of length 1, the description in
terms of the bipartite structure will be preferred because
it offers a more balanced partition of the states into two
equiprobable classes. The specific path structure of this
graph leads to a slow mixing of the chain within and
between the two cycles, and the assortative split is thus not
apparent at T ¼ 1. Stated differently, at timescale T ¼ 1,
the bipartite switching is the dominant dynamical behavior
of the Markov chain and fitting a DCSBM to the state-
transition graph correctly captures this.
The importance of timescales.—Our approach also offers

a way out of the above encountered dilemma: using T ≫ 1
shifts the focus to the slow modes of the dynamics, for
which the assortative split into the two cyclic structures
becomes clear. The time parameter thus tailors the search to
partitions that are dynamically relevant over longer time-
scales. Unlike with many community detection methods
featuring a resolution parameter, the time parameter does
not offset a null model linearly, but acts nonlinearly [see the
SM, where we also prove the additional result that the
optimal split into K ¼ 2 equiprobable aggregation classes
of any Markov chain tends to be either almost block
diagonal (assortative) or almost bipartite (disassortative)].
How many aggregation classes?—In many scenarios,

the number of aggregated states K can be gleaned from
prior knowledge, and we thus have not discussed determin-
ing K. In a scenario where K is unknown, one would be
tempted to optimize the autoinformation over all partitions
without a constraint on K, but this would yield the trivial
state aggregation yt ¼ xt (see the SM). This can be
interpreted as data “overfitting”: without constraints on
K, the best aggregation corresponds to the original model,
which trivially captures all available information. To yield
an aggregated description of size K ≤ N when maximizing
the autoinformation, we have to impose additional con-
straints on the state-aggregation mapping h.
For a given quality criterion such as the autoinformation,

two approaches are typically considered. One would
be to find state-aggregation mappings via Eq. (3) for a
varying number of states K ∈ f1;…; Ng and then
select from among those solutions, e.g., using an elbow
criterion (see the SM). Here, we follow another common
approach by adding a complexity penalty to the objective
function considered in Eq. (3). Optimizing the corres-
ponding variational problem over all state-aggregation
mappings leads to an aggregated system that maximizes

autoinformation while maintaining small complexity. This
general approach can be interpreted in terms of Occam’s
razor or a minimum description length (MDL) princi-
ple [51].
For simplicity, we choose the description length neces-

sary to describe the aggregated states of the aggregated
state space as a penalty term. Specifically, we consider the
regularized autoinformation with an entropy penalty

Iβ;TðhÞ ¼ ITðhÞ − βH(hðxtÞ); ð4Þ

where β is a Lagrange multiplier for the regularization term
(see the SM for a discussion of these parameters). However,
our scheme is not bound to this specific complexity penalty,
and other regularization schemes such as the Akaike
information criterion [52] or ideas from Bayesian statistics
and MDL-based modeling [51,53] may be considered. The
specific choice of entropy for capturing the complexity of
the partition can be seen as a smooth generalization of K,
the number of classes, since K equally likely blocks
translate into an entropy of logK, while the entropy is
also able to account for the size distribution of classes.
Like most combinatorial optimization problems, finding

the aggregation that maximizes Eq. (4) is computationally
difficult, and we thus have to resort to a heuristic opti-
mization. Here, we use an ϵ-greedy optimization scheme
akin to simulated annealing: starting from an initial
partition, we stochastically loop over nodes and try to
aggregate them with another class. If the regularized
autoinformation improves, we aggregate the node with
the new class with probability 1; otherwise, we aggregate
with probability ϵ ∝ e−ΔIβT=τ, with τ a temperaturelike
parameter that decreases along the maximization. A
detailed discussion is given in the SM, and a reference
implementation is publicly available [54].
Dynamical modules at short and long timescales.—The

regularized autoinformation primarily provides a tool for
state aggregations in Markov chains and dynamical data.
However, due to its connection with maximum-likelihood
estimation of a DCSBM (for T ¼ 1), the regularized
autoinformation also provides a dynamical view of certain
model selection aspects under the DCSBM.
For concreteness, consider a random walk on a sym-

metric circular structure as the cycle of N nodes connected
to the k nearest neighbors of Fig. 2. For short timescales, it
is sensible for dynamical model reduction to aggregate
small patches of the cycle that are unlikely to be left by the
walker after T steps into aggregated states: the predictive
power of such a fine-grained description outweighs the cost
of the regularization term for most nonzero values of β. In
particular, observe that maximizing Eq. (4) with T ¼ 1
leads to a nontrivial number of aggregated states, as shown
in Fig. 2. By symmetry arguments, which patches of the
cycle we use as aggregated states is irrelevant, and there is a
large number of equivalent optimal aggregated system
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descriptions corresponding to different (symmetric, regu-
lar) partitions of the cycle.
Interestingly, qualitatively similar results hold irrespec-

tive of the regularization scheme used. This explains why,
e.g., inferring a DCSBM to such a cyclic graph with model
selection via an MDL approach [53] distinct from the
regularization term used in Eq. (4) results in a split into 22
classes (for a more detailed discussion, see the SM). This
“overfitting” behavior is in fact generic and can be
observed with many other community detection algo-
rithms, including modularity optimization [55,56] and
the map-equation framework [9,57]. The issue is that while
the graph structure can be compressed in terms of block
structure with relatively small blocks, these blocks are less
relevant for the long-term dynamics.
As seen in Fig. 2, for Markov chains with sparse state-

transition graphs with long-range path structures, this
mismatch between clusters defined via one-step block
connectivity (T ¼ 1) and clusters capturing the long-term
behavior can be quite pronounced. Indeed, the regularized
autoinformation for short times is typically optimized by
choosing a relatively large number of aggregated states,
while the dynamically planted class structure is only found
for larger T. This short time behavior of the regularized
autoinformation is again mirrored by the MDL-based
inference of DCSBMs or the map equation, which both
fail to find the dynamically meaningful partition for long
timescales for all the graphs shown in Fig. 2: the inference
of the DCSBM using the MDL approach in [53] yields
around 22 classes in all cases; the map equation provides 7,
10, or 4 aggregation classes for the three scenarios,
respectively. While in this case spectral methods such as
generalized Perron cluster cluster analysis [13] can resolve
the relevant structure, they may fail when intermediate or
short timescales are of interest. More in-depth comparisons

can be found in the SM, where we also describe a synthetic
model class (a graph ensemble) that displays the behavior
observed here. We emphasize that changing the parameters
β or T is in general not equivalent (see the SM).
Hierarchical aggregation of Markov chains with multi-

ple timescales.—In a hierarchical stochastic block model
(see Fig. 3, left), for any given value β > 0, the finer
structure is typically preferred at lower values of T where
the walker dynamics are confined to the local class. Higher
values of T allow the walker to visit larger portions of the
network, and coarser partitions gain importance.
Consider now two alternative hierarchical aggregations

(core periphery vs assortative) of an initial aggregation into
four classes (see Fig. 3, right). While the same four-class
structure is preferred at short timescales, the two-class
assortative and the core-periphery structures are preferred
at medium and longer timescales. Although for two equally
sized classes (in terms of entropy), the optimal aggregation
is either assortative or disassortative, here, the core and
periphery are of different sizes in terms of the probability of
the presence of the walker. In particular, the regularization
term βHðytÞ in Eq. (4) favors the core-periphery split. This
effect dominates at large timescales, where the autoinfor-
mation converges toward zero. This is intrinsic to what our
regularization term in Eq. (4) considers to be a “small” or
“simple” model, and other choices of regularization may
lead to different results. Similar trade-offs were observed
for stochastic block models and DCSBMs in [46,58] when
considering core-periphery or assortative structures.

FIG. 2. Markov chains with natural timescales: a k-nearest-
neighbor cycle with N nodes (green), two cycles of N=2 nodes
connected by a single edge (orange), and a bipartite graph with a
single link breaking the symmetry (blue); see insets for sche-
matics. The plots correspond to graphs with 360 nodes with
average degree hki ≈ 36. The color of each line encodes the
corresponding graph topology. At short timescales, the maximi-
zation of the regularized autoinformation (β ¼ 0.1) tends to
overfit the structure of these graphs with dense diagonal blocks
(similar results hold for many community detection methods; see
text). When increasing T, the algorithm finds the solution with
the expected number of classes.

FIG. 3. State aggregations for Markov chains with hierarchical
timescales on a stochastic block model. Left: We plot the
difference in the regularized autoinformation between a fine-
state aggregation hf into the four planted aggregation classes, and
a coarse two-class state aggregation hc for a hierarchical state-
transition graph of a Markov chain (inset). The plot shows that at
longer timescales (green shade) Iβ;TðhcÞ > Iβ;TðhfÞ and hence
the coarser aggregation is preferred over the fine aggregation,
which is preferred at shorter timescales (gray shade). Right:
Difference in the regularized autoinformation between the two-
class split hc, describing either a core-periphery (orange) or an
assortative (violet) aggregation, and the underlying planted
aggregation into four classes (hf). The four-class partition has
a higher autoinformation than the two-class split at short time-
scales (gray shade). The assortative partition has highest auto-
information for middle range timescales (orange shade), and the
core-periphery partition is preferred at longer timescales (blue
shade). All graphs consist of 400 nodes and expected average
degree hki ¼ 15, with β ¼ 0.05.
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The system of ocean surface currents.—Let us now
showcase how one can use the autoinformation as a tool
to analyze dynamical data. The Global Drifters Program
[59] tracks drifter buoys on the surface of all oceans. The
dynamics of the drifters is a proxy for the global system of
surface currents, i.e., water masses moving between differ-
ent areas of the ocean surfaces.
Using the regularized autoinformation, we identify

macro areas that optimally aggregate the drifter dynamics.
We find that the temporal dimension of the kinetics strongly
influences the outcome. For short timescales, the aggrega-
tion classes correspond to small geographic patches of
ocean surface that become larger where currents are
stronger and steadier, e.g., along the equator (see Fig. 4,
top). For timescales closer to the expected time for a drifter
to cross an ocean, larger geographic patches are found.
These encompass all major ocean gyres (see Fig. 4, bottom)
separating equatorial, subtropical and boreal regions. The
northern and southern Pacific are subdivided into western
and eastern parts that belong to the same large-scale
circulation pattern but represent different areas of surface
convergence and are located around so-called “garbage
patches” [60–62].
Recently, the ocean currents have been clustered in

dynamical domains by analyzing a long-term simulation
of the barotropic vorticity equation and applying a simple
k-means algorithm on the magnitude of the different terms
contributing to the vorticity dynamics [63]. This dynamics
is only partly comparable to the drifter dynamics as it

involves not just surface currents but an average over all
ocean depths. It is nonetheless interesting to compare the
outcomes, which share many features (see the SM for these
comparisons). However, a key difference is that while the k-
means method [63] can lead to geographically discon-
nected patches, scattered across the globe, our method finds
spatially connected classes and is moreover completely
data-driven, using only the multiscale dynamical analysis
of empirical trajectories.
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