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Distribution Networks Achieve Uniform Perfusion through Geometric Self-Organization
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A generic flow distribution network typically does not deliver its load at a uniform rate across a service
area, instead oversupplying regions near the nutrient source while leaving downstream regions under-
supplied. In this Letter we demonstrate how a local adaptive rule coupling tissue growth with nutrient
density results in a flow network that self-organizes to deliver nutrients uniformly. This geometric adaptive
rule can be generalized and imported to mechanics-based adaptive models to address the effects of spatial

gradients in nutrients or growth factors in tissues.
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Multicellular and macroscopic living organisms are
continually faced with the challenge of how to uniformly
distribute nutrients throughout their entire volume to
maintain metabolic function while minimizing waste of
resources. For this, they have evolved complex flow
systems in the form of dense and space-filling networks
of small vessels, termed capillaries, which distribute fluid
laden with nutrients. In such perfusable systems, nutrients
are carried with the flow through the capillaries and
gradually diffuse across the semipermeable walls where
they are used to support the metabolic needs of the tissue.
In the absence of fluctuations in the flow and other
mitigating factors, most network architectures, hetero-
geneous or uniform, will not distribute nutrients equally:
in general, the tissue that is upstream will absorb more
nutrients than the tissue downstream (Fig. 1).

When biologically inspired microfluidic networks have
been considered in the past, the emphasis has been on
measuring and modeling the shear stress, resistance, flow
rate, and pressure distributions, e.g., as in [1,2], and the
functionality of nutrient delivery has been largely ignored.
Recent work has investigated a network adaptation algo-
rithm for uniform edge flow, showing that it is possible to
tune edge conductances while maintaining the network
structure to obtain equal flow over all edges [3]. In the
context of microvascular networks, the finite size of red
blood cells may aid uniform flow [4-6]. However, uniform
flow does not guarantee uniform nutrient distribution: if
nutrients are continually depleted by absorbing tissue,
downstream tissue would generally still have a deficient
supply.

Recent work has considered the optimal architecture for
uniform nutrient perfusion in plant leaves [7]. For a network
with fixed edge and node positions, the authors show that
adding a hierarchy in edge radii yields an optimal edge
conductance distribution for uniform nutrient delivery.
However, this design may require an order of magnitude
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variation in vessel radii, and such stratification is not always
possible due to developmental or physical constraints.
Similarly, fabricating a network with a wide range of vessel
sizes may be difficult depending on the experimental setup.
For instance, the method of casting in sacrificial ink can
generate networks with nonuniform edge radii, but the
printed diameter is limited to a few multiples of the nozzle
diameter [2].

Here we demonstrate that an arbitrary initial network can
self-organize to achieve uniform nutrient perfusion using a
simple geometrical and biologically plausible adaptation
rule based on local information. We constrain edge radii to
be equal, but allow freedom in the edge lengths and
network connectivity. Similar vertex models of cell neigh-
bor interactions are used to model the behavior of tissue
sheets, typically incorporating mechanical cues for tis-
sue adaptation such as wall tension and cell elasticity [8].
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FIG. 1. Networks with a uniform topology will have a gradient
in face nutrient absorption density as the nutrient concentration
decays. (a) Schematic of nutrient perfusion in a distribution
network, with @ signifying the nutrient absorption density per
face as delivered by adjacent edges. The network model of
perfusion is applied to numerically calculate @ for (b) a square
grid with 64 faces and (c) a Voronoi diagram with 50 faces.
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These models are able to recover the geometric structure of
tissue sheets [9,10] as well as predict complex bulk
properties such as the collective motion of cells [11,12].
In this Letter, we introduce an adaptive rule reminiscent of
vertex models to obtain uniformly perfusing networks in an
abstract setting of areas of tissue separated by channels
where the extracellular fluid can flow. In this formulation,
network faces do not necessarily represent individual cells,
but rather, regions of tissue. Starting with an arbitrary
network, the algorithm tunes vertex positions under forces
that stem from differential tissue growth. A segment of
tissue receiving more nutrients grows faster, effectively
pushing the channels at its boundary further apart and
increasing the nutrient delivery at underfed tissue. When
the forces become locally balanced, the system reaches
equilibrium, and the final network has achieved uniform
nutrient perfusion.

A model of network perfusion must include the rate at
which nutrients leave the network through the capillary
membrane, or the edge absorption rate. The form of the
absorption rate depends on the physical properties of the
system; previous work on fungal networks has used a rate
proportional to the initial edge concentration [13]. In
models of oxygen transport to tissue, the basic Krogh
model predicts a linear decay in oxygen concentration
along a capillary [14], and a variety of more physiologically
realistic forms have been explored [15-20]. We stress that
the equalization algorithm is applicable for any form of
the nutrient concentration decay; here we follow the model
of exponentially decaying concentration presented in
Refs. [7,21]. Consider a capillary with radius r, length
L, and average cross sectional flow velocity «. Nutrients are
transported by advection along the flow and additionally by
diffusion within the capillary with a diffusion constant .
Perfusion occurs when nutrients diffuse through the capil-
lary wall and are absorbed by the tissue; let v be the
metabolic absorption rate of the capillary membrane.
Nutrient concentration decay along the capillary is shown
to have the form

C(z) = C(0)eF/L, (1)

where the decay coefficient f is given by
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where Pe = uL /x is the Peclet number, S = vL/ru is the
ratio of the absorption rate to the advection rate, and
a = vL /. The edge nutrient absorption rate ¢ is given by
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Assumptions of the model are that the timescale of
diffusion in the capillary is much shorter than the timescale
of advection, ur?/kL < 1, that the capillary is long and
slender, r/L < 1, and that the absorption length scale is
much larger than the capillary radius, vr/k < 1. In the limit
p < 1, this expression simplifies to ¢ ~ 2zrLvC,.

We compute ¢;; for each edge using Eq. (3), first
by finding the flow Q;; (and therefore flow velocities since
0= zrrzu,»j) using current conservation at nodes and
Ohm’s law. Edge resistance is determined by the
Hagen—Poiseuille law R;; = 8uL,;/(xr*), where p is
the fluid viscosity and r is constant across all edges.
The networks considered here have one current source
and sink, and the nutrient concentration drop across each
edge is computed iteratively, starting from the current
source node prescribed with initial concentration C,. At
each node i, conservation of nutrient flux is obeyed with
> k.00 Cri(Lii) Qui = Zj,Q,-/->O Ci;(0)Q;j, where Q;; > 0
means the direction of flow is from i to j.

The measure of uniformity is captured by the nutrient
absorption density @ of each face f. Assuming nutrients
diffuse freely within the tissue, it is defined as the nutrient
received from adjacent edges scaled by face volume:

f 4rAf Z ¢Ij’ (4)

where the thickness of the faces is set to 2r and a factor of
1/2 is included because each edge supplies two faces. Let
®,, be the metabolic demand of the tissue, a constant fixed
by the cell activity levels. When @ is computed for two
uniform networks in Figs. 1(b) and 1(c), a gradient is
clearly present, with faces close to the source well supplied
while faces near the sink are starved. Our goal is to alter the
geometry of the network in a way that eliminates the
nutrient density gradient, yielding a uniformly perfusing
network.

We employ a face equalization algorithm similar to a
vertex model that imposes forces on the network vertices,
allowing their positions to shift. A vertex experiences a
repulsive force from an adjacent face with a high nutrient
density and an attractive force from a low density face.
Vertices on the boundary are allowed to shift, but the
motion is restricted to either purely the horizontal or
vertical direction to preserve the square network boundary.
A vertex force becomes zero when all adjacent faces attain
the same nutrient absorption density. In this way, the high
nutrient density faces grow and low density faces shrink
until perfusion is equalized across the network.

We now outline the equalization procedure in detail. The
force on a vertex is computed using information only from
faces adjacent to the vertex. Let {®,} be the set of nutrient
absorption densities over all network faces f. For each
vertex i let (®f); = (1/Ny) > ¢ e @y, the mean nutrient
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absorption density of the Ny adjacent faces. The force from
face h on i has magnitude @, — (®,); and is directed away
from the face centroid along the angle bisector of the face,
in a fashion consistent with osmotic pressure forces in
vertex models [22]. Thus, the force points away from the
face centroid if ®, > (®;); and toward the face centroid
otherwise. Vertex coordinates are shifted by a fixed step
size scaled by the net force from all N adjacent faces. If all
faces adjacent to a vertex have equal nutrient density, the
net vertex force is zero. After a coordinate shift, the nutrient
flow and absorption through the network are recalculated,
the new set {®,} is recomputed, and the process repeats,
stopping when the standard deviation of {®} is less than
1% of (@), averaged over all faces. The step size is chosen
to ensure that no edges overlap after the vertex coordinates
are shifted. If this is satisfied, we find the algorithm to be
capable of achieving arbitrarily uniform networks.

Ideally, this adaptation process is purely geometric,
preserving the set of vertices and edges and changing only
the vertex positions, but problems arise when network
edges overlap. Edge crossings are avoided by allowing for
the network topology to change via edge collapse and angle
collapse, described in detail in Supplemental Material,
Sec. 1 [23].

The equalization algorithm induces a trade-off between
uniformly distributed face positions and uniformly distrib-
uted nutrients. We first analyze the effects of equalization on
a set of 50 Voronoi networks with 50 faces, a sample of
which is shown in Fig. 2. The side length of the full network
is 10 cm, the capillary radius is » = 0.5 mm, and the inflow
rate is Q;, = 100 yL min~!, within a realistic regime for
artificial perfused vascular networks [25]. We consider the
transport of oxygen, which has a diffusion coefficient of
k=3 x 107 m?s~! in water and its solubility in water
gives the initial concentration Cy = 7 x 10~3 kgm™3. The
oxygen absorption rate, set by the permeability of the
capillary membrane, is v = 4 x 10~ m~!. The metabolic
demand of the tissue is set to @, = 8 x 1071¢ kgm™3 57!,

FIG. 2. The face equalization algorithm results in uniformly
perfusing networks. Sample Voronoi networks with 50 faces are
shown, with the corresponding equalized networks below.
Equalized networks have a standard deviation in {®,} equal

to 0.01(®;). A current source is located at the lower left corner
and sink at the upper right corner.

with more details given in Supplementary Material,
Sec. II [23]. We find that the initial Voronoi networks have
@ decaying away from the source but a uniform distribution
of face centroids. During equalization, face positions are
nonuniformly shifted toward the sink, as discussed in
Supplemental Material, Sec. III [23]. The equalization
algorithm acts like a growth induced pressure, as vertex
forces arise from differences in @ in adjacent faces.

We find that equalized networks attain morphological
features that allow for uniform perfusion, namely an
asymmetric distribution of the face sizes and shapes.
First, uniform networks have larger faces near the source
and smaller faces near the sink. Figures 3(a) and 3(b) show
the distribution of the face area along the space of the
network. In the initial networks, the face area is strongly
correlated with the polygon type, i.e., the number of sides
of the face, but not with face location. This contrasts with
the uniformly perfusing networks, where there is no clear
correlation between face area and polygon type, but there is
a strong correlation between area and location, with large
faces near the source and small faces near the sink. After
the equalization process, edges that provide more nutrients
feed larger faces, and the nutrient-rich edges are all near the
source, causing large faces in that region. Nutrients in the
network unavoidably decay from the source to the sink, but
an asymmetric distribution of face sizes allows for uni-
formly perfusing networks.

The relation between the face location and elongation is
identified in terms of the face shape parameter. This is a
measure of the compactness or elongation of a polygon,

initial networks equalized networks
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FIG. 3. Equalized networks have smaller and elongated faces
near the sink. (a),(b) Face area as a function of Euclidean distance
from the face centroid to the source at (0,0). Color indicates face
shape, classifying polygonal faces by their number of sides.
Stratification by color in the initial networks indicates that
polygonal faces with a larger number of sides tend to be larger
than faces with fewer sides. (c),(d) Face shape parameter as a
function of distance to the source. The shape parameters of
equilateral polygons are shown as solid horizontal lines.
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and has been used to classify planar tilings and predict the
jamming behavior of tissues [10,11,26]. Defined as the
dimensionless quantity p, = perimeter/+/area, it is mini-
mal for regular polygons. For example, p, = 2(v/3)° =
4.56 for an equilateral triangle and p, = 4 for a square, and
a nonregular triangle or quadrilateral will have strictly
larger p.

The change in the face shape parameter distribution
between the initial and equalized networks is shown in
Figs. 3(c) and 3(d). For the initial networks, p, has no
correlation with the location in the network, but is dictated
by the number of sides in the face. Moreover, all faces are
nearly regular, since the shape parameter for each type of
polygonal face lies close to the minimal shape parameter
for that regular polygon. For the uniformly perfusing
networks, there is no longer a strong dependence between
the face p, and polygon type, but there is a correlation
between the shape parameter and location: faces near the
source tend to be more compact, and faces by the sink tend
to be more elongated. Since faces far from the source have
less nutrient absorption per edge, they compensate to
supply the same nutrient absorption density by increasing
the total face perimeter per area.

We have shown that uniform perfusion can be achieved
in general regardless of the initial network architecture, but
in practice the resulting nutrient field must also meet the
metabolic demands of the tissue. We consider steady state
nutrient perfusion, assuming that once the nutrients leave
the capillaries and enter the tissue they are able to diffuse
freely. We denote the quantity (®;)/®,, as the network
efficiency: an equalized network meets the metabolic
demands of the tissue if the efficiency is greater than 1.
To evaluate the equalized networks, we propose a measure
of network asymmetry, defined by the ratio of the number
faces closer to the outlet to the number of faces closer to the
inlet. The asymmetry of the initial Voronoi networks is
about 1 since the faces are evenly distributed in space [see
Fig. 3(a)], and is larger for equalized networks, as the
distribution of face size and compactness is skewed; for
reference, the networks presented in Fig. 2 have a mean
asymmetry of 3.0. This single measure serves to bundle the
distributions of face size and compactness. High asymme-
try is an indicator that a high number of topological
transitions have occurred during equalization, which means
that the initial network was not suitable for the choice of
parameters, as we discuss further on. We find that the
equalized network efficiency has a clear relation with the
asymmetry, and that renormalizing appropriately, the data
collapse. The network efficiency obeys the linear scaling
relation (®,)/®y «x QCy/r [Fig. 4(a)], indicating the
geometric nature of the equalization process.

Finally we discuss how to select a suitable initial
network before implementing the equalization procedure
for an experimental perfusion network. As previously
stated, a final equalized network is suitable for perfusion
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FIG. 4. Plotting the network asymmetry and efficiency
reveals a geometric scaling law. (®;)/®,, is normalized by
the dimensionless parameter a = (r/r*)(Q*/Q)(Cj/Cy), where
r* = 0.5 mm, Q* = 100 yLmin~', and C;; =7 x 107> kgm™.
We consider three different values of », Cy, and Q (see Supple-
mentary Material, Sec. II [23] for details). Each data point is the
average over ten networks equalized to 3% uniformity with error
bars marking one standard deviation.

if (®f)/®), > 1. While theoretically there is no upper limit
on the asymmetry of the final network, large deformations
to the initial structure can be problematic. As the asym-
metry of a network increases, it is more likely to have small
faces, and therefore short edges, by the network sink. The
model expression for ¢ becomes invalid once the capillaries
become too short, i.e., when r/L < 1 fails to be true. This
sets a limit on the geometry of a suitable network. We set
L., to be the average of the top 10% of the shortest
network edges, and consider the length condition to be met
if r/L,;, < 0.1. These two conditions are met in the upper
left quadrant in Fig. 4(b), narrowing the section of
parameter space that can be used to generate networks
with an adequate nutrient supply. While the parameters v
and « depend on the material properties of the tissue and
capillary walls and are thus difficult to tune, the parameters
r, Qm, Cop, and N can easily be modulated in the
experimental setup. Figure 4(b) shows that the capillary
radius is the dominant factor for selecting an initial net-
work; if 7 > 0.5 mm the finalized network is likely to have
edges that fail the length criterion. Increasing the number of
faces tends to increase the efficiency but also r/L,;
therefore, there is a balance to be struck in choosing the
density of the initial network. Finally, if r and N are
suitable, increasing Q of C, will increase the efficiency
while maintaining the network geometry. The selected
region of parameter space can reasonably be attained
experimentally.

In light of recent advances in artificial microvascular
devices [27-30], it is necessary to develop a theory of
network design for uniform perfusion over an extended
space. We have presented a self-organizing method for
generating uniformly perfusing networks from arbitrary
initial networks using a geometric local adaptation rule.
The equalization algorithm successfully achieves uniform-
ity on all networks we have tried; the networks presented
have a standard deviation in @ thatis 1% of the mean of ®.
During the equalization process, this model is free to explore
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the space of configurations, utilizing network geometry as a
degree of freedom. The equalization algorithm works by
tuning the global distribution of network faces, forming
large, compact faces by the source and small elongated faces
by the sink. The network efficiency scales linearly with the
capillary radius, the nutrient inflow rate, and the initial
nutrient concentration. Finally, a suitable initial network
must be chosen for the equalized network to fulfill metabolic
demands.

The algorithm presented here is a proof of principle that a
network can harness local geometric responses to stimuli to
achieve a state of uniform perfusion. While a global
property like total energy dissipation is difficult for the
network to monitor, biological networks are often able to
measure select local edge properties. For instance, capillary
networks can sense flow velocities though the wall shear
stress and internal nitric oxide, produced in response to low
oxygen levels, and modulate vessel diameters to ensure that
adequate operational levels are maintained [21,31,32].
Network growth models that use feedback from tissue
oxygenation levels have been shown to mimic features seen
in natural vasculature networks [33]. Since our equalization
algorithm requires information only from the nearest
neighboring faces to compute vertex forces, it is a local
computation. We do not expect natural networks to use this
exact mechanism, but because this local algorithm con-
sistently results in uniformity it may be an example from a
larger class of natural adaptation strategies for resource
distribution.
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