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Linear-response time-dependent density-functional theory (TDDFT) can describe excitonic features in
the optical spectra of insulators and semiconductors, using exchange-correlation (xc) kernels behaving as
−1=k2 to leading order. We show how excitons can be modeled in real-time TDDFT, using an xc vector
potential constructed from approximate, long-range corrected xc kernels. We demonstrate, for various
materials, that this real-time approach is consistent with frequency-dependent linear response, gives access
to femtosecond exciton dynamics following short-pulse excitations, and can be extended with some caution
into the nonlinear regime.
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Introduction.—Optical spectra of electronic systems can
be calculated from first principles in two alternative ways:
Using frequency-dependent linear response (LR) theory, or
via real-time (RT) propagation of the electronic wave
function following a short initial excitation and then
Fourier transforming the induced current fluctuations
[1,2]. The RT description has several benefits: for large
systems it becomes computationally advantageous over LR
[3]; while both theories allow coupling to nuclear dynam-
ics, RT gives easy access to ultrafast (as or fs), transient,
and nonlinear processes [4–6].
To describe the dynamics of interacting electrons, time-

dependent density-functional theory (TDDFT) is an accu-
rate yet computationally efficient choice [7–9]. Here, our
interest is in RT electron dynamics of optically excited
periodic solids with a band gap. RT-TDDFT for solids has a
long history [10,11]: Besides the calculation of optical
spectra, it has been used to simulate two-photon absorption
and ultrafast dielectric response [12–15], coherent phonons
and stimulated Raman scattering [16], ultrafast laser-
induced metal-insulator transitions [17], nonlinear optical
response and high-order harmonic generation [18–20],
photoelectron spectroscopy [21], electronic stopping power
[22,23], ultrafast demagnetization and magnons [24,25], as
well as core excitations [26–28].
In Refs. [10–26], (semi)local exchange-correlation (xc)

functionals were used, i.e., the adiabatic local-density
approximation (ALDA) or generalized gradient approxi-
mations (GGA). This causes a serious problem for semi-
conductors and insulators: (semi)local xc approximations
cannot describe excitons [1,29] and, therefore, produce
physically wrong optical absorption spectra. Excitonic

features can be captured in RT using hybrid functionals
[2,27,28] or the Bethe-Salpeter equation (BSE) [30].
However, these methods are computationally much more
demanding than pure xc density functionals.
The main purpose of this Letter is to provide proof of

concept that RT-TDDFT is capable of describing excitonic
effects. The idea is to generalize the so-called long-range
corrected (LRC) xc kernels from LR-TDDFT [31–36] into
the RT regime; the result is an xc vector potential that
accounts for the long-range screened electron-hole interac-
tion that causes the formation of excitons.We implement this
approach in Qb@ll [37–39], and demonstrate that it produces
optical spectra consistent with LR. Then, we present appli-
cations illustrating the capabilities and limitations of this
approach, including ultrafast and nonlinear effects.
Theoretical background.—In LR-TDDFT, interacting

electronic systems respond to the sum of external pertur-
bation plus linearized Hartree and xc potentials. The latter
are determined by the Hartree kernel fHðr; r0Þ ¼ 1=jr − r0j
and the xc kernel fxcðr; r0;ωÞ; the xc kernel—a functional
of the ground-state (gs) density ngsðrÞ—has to be approxi-
mated in practice. This formalism is widely used to
calculate excitation energies and optical spectra [8,9].
In a periodic solid, optical absorption is defined with

respect to the total macroscopic classical perturbation,
including the induced field [1,40]. LR-TDDFT accounts
for this via a modified Hartree kernel, which, in reciprocal
space, is given by fmod

H;GG0 ðkÞ¼ð4π=jkþGj2ÞδG;G0 ð1−
δG;0Þ [36]. Here, G;G0 are reciprocal lattice vectors, and
k is a wave vector in the first Brillouin zone. Thus, the
modification consists in setting the head of the Hartree
kernel (where G ¼ G0 ¼ 0) to zero.
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To describe optical excitations, we need the xc kernel
fxc;GG0 ðk;ωÞ in the limit k → 0. It is a known analytic
property that, in this limit, the head of the xc kernel
diverges as k−2, the wing elements (G ¼ 0, G0 finite and
vice versa) diverge as k−1, and the body elements (G;G0
finite) approach a constant [41,42]. In three-dimensional
bulk solids, the k−2 behavior of the head of fxc;GG0 ðk;ωÞ is
the dominant effect causing the formation of excitons [1].
Several approximations which capture this behavior have
been proposed [31–36], most of them independent of ω
(adiabatic approximation). Here, we consider the simplest
of these, the LRC xc kernel [31,34]

fLRCxc;GG0 ðkÞ ¼ −
α

jkþGj2 δG;G0 ; ð1Þ

where α is, in principle, a functional of ngs, but here, we
treat it as a material-dependent empirical parameter. With a
suitable choice of α, the LRC kernel can reproduce the
main features in the optical absorption spectra of insula-
tors and semiconductors, including strongly bound and
continuum excitons [36,43]. In the following, we limit
ourselves to the head-only LRC kernel, i.e., we set
fLRCxc;GG0 ðkÞ ¼ 0 unless G ¼ G0 ¼ 0.
The ALDA lacks the long-range (k → 0) behavior

required for an excitonic xc kernel; however, it does
contribute short-range local-field effects (G;G0 nonzero),
which can impact the spectral shape. We will take advan-
tage of this by defining a combined (LRCþ) xc kernel,

fLRCþ
xc ¼ fLRCxc þ βfALDAxc ; ð2Þ

where β is an adjustable parameter which gives us some
flexibility to improve LRC spectral features, if needed.
The xc kernel is defined as the functional derivative of

the time-dependent xc potential vxcðr; tÞ. In the ALDA, this
becomes fALDAxc ðr;r0Þ¼δvLDAxc ½n�ðrÞ=δnðr0ÞjngsðrÞ. However,
for excitonic xc kernels such as the so-called bootstrap
kernel [44], no comparable relation exists: most excitonic
xc kernels currently in use [35,36] are not defined as the
functional derivative of an xc potential. Thus, it is not
immediately obvious how to go from LR- to RT-TDDFT
for this class of functionals; however, for the simple LRC
xc kernel (1), it is relatively straightforward, as we shall
now discuss.
Consider a solid which is initially in the ground state

associated with a periodic lattice potential vðrÞ. We assume
that the band structure has been calculated using LDA or a
GGA (which may underestimate the band gap, but this is
not our major concern here). At time t ¼ 0, a time-
dependent perturbation is switched on, in the form of a
scalar potential v0ðr; tÞ and/or a vector potential A0ðr; tÞ.
Formally, this requires the framework of time-dependent
current-DFT [8], featuring time-dependent xc scalar and
vector potentials vxcðr; tÞ and Axcðr; tÞ, and the system

evolves under the time-dependent Kohn-Sham equation in
the velocity gauge [26]

i
∂
∂tφjðr; tÞ¼

�
1

2

�∇
i
þA0ðr; tÞþAxcðr; tÞ

�
2

þvðrÞþv0ðr; tÞþvHðr; tÞþvxcðr; tÞ
�
φjðr; tÞ:

ð3Þ

The time-dependent density can be written as nðr; tÞ ¼
ngsðrÞ þ δnðr; tÞ, where the density response δnðr; tÞ is not
necessarily small compared to the lattice-periodic ngsðrÞ.
Recalling that the optical response requires removing the
long-range (G ¼ 0) part of the classical Coulomb inter-
action, the time-dependent Hartree potential takes the form
vHðr; tÞ ¼ vH½ngs�ðrÞ þ vmod

H ½δn�ðr; tÞ, using the modified
Hartree kernel discussed above.
Next, we consider the time-dependent xc effects. The

ALDA xc potential vALDAxc ½n�ðr; tÞmatches the ground-state
LDA, but does not produce excitonic binding. To generate
excitons, we include additional, purely dynamical xc
effects based on the LRC kernel (1), see Supplemental
Material (SM) [45] for details. The resulting LRC xc scalar
potential [59] is vLRCxc ðr; tÞ ¼ R

dr0fLRCxc ðr; r0Þδnðr0; tÞ in
real space and vLRCxc;GðtÞ ¼ −ðα=jGj2ÞδnGðtÞ in reciprocal
space, making use of the lattice periodicity of the density
response. However, the long-range ðG ¼ 0Þ component of
vLRCxc;GðtÞ is ill defined, in spite of the fact that δn0ðtÞ ¼ 0 due
to charge conservation. This problem can be avoided by
transforming into an xc vector potential [60]. In real space,
we obtain

ALRC
xc ðr; tÞ¼−

α

4π

Z
t

0

dt0
Z

t0

0

dt00∇
Z

dr0
∇0 ·jðr0; t00Þ
jr− r0j ; ð4Þ

where the current density jðr; tÞ enters via the continuity
equation ∇ · jðr; tÞ ¼ −∂nðr; tÞ=∂t, and the scalar and
vector potentials are connected through the gauge relation
∂ALRC

xc ðr; tÞ=∂t ¼ −∇vLRCxc ðr; tÞ. Since the head of the
LRC xc kernel (1) is dominant for optical excitations,
we only include the macroscopic current density j0 in the
LRC vector potential [61]. Thus, we end up with

ALRC
xc;GðtÞ ¼ α

Z
t

0

dt0
Z

t0

0

dt00jGðt00ÞδG;0; ð5Þ

which can also be written as a differential equation:
d2ALRC

xc;0 ðtÞ=dt2 ¼ αj0ðtÞ. The total current density is
the sum of the paramagnetic current density jp ¼
ð2iÞ−1Pj φ

�
jðr; tÞ∇φjðr; tÞ þ c:c: and a diamagnetic con-

tribution featuring the vector potentials. Thus, the macro-
scopic total current density is
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j0ðtÞ ¼ jp;0ðtÞ þ ½A0
0ðtÞ þALRC

xc;0 ðtÞ�ngs;0; ð6Þ

where ngs;0 is the average ground-state density. An RT-
TDDFT formalism that is consistent with the LRCþ kernel
(2) is obtained by using ALRC

xc ðtÞ and a β-scaled scalar
ALDA xc potential, vALDAxc;β ðtÞ, in Eq. (3). The β scaling only
affects the response part of vALDAxc ðtÞ associated with δnðtÞ;
see SM [45] for more details. As before, we shall refer to
this combined RT-TDDFT approach as LRCþ.
Results and discussion.—In the following, we present

results for Si, LiF, CsGeCl3, and an H2 chain. The RT-
TDDFT calculations were done with Qb@ll [37–39], and we
compare with LR-TDDFT and BSE calculations using
YAMBO [62] and Quantum ESPRESSO [63] (for computational
details see SM [45]).
We begin with Si, to verify the consistency between RT-

and LR-TDDFT. The LRC kernel (1) was originally
proposed to reproduce the optical spectrum of Si using α ¼
0.2 [31]. Thus, we compare fALDAxc and fLRCþ

xc (with β ¼ 1)
in LR, and solve Eq. (3) using the corresponding ALDA
and LRCþ potentials. Starting from the Kohn-Sham ground
state, the system is excited by a delta-peaked uniform
electric field along the z direction, which leads to a constant
A0 switched on at t ¼ 0 (see SM [45]). The dielectric
function εðωÞ is obtained from the induced current fluc-
tuations, following Yabana et al. [11,13].
Figure 1 shows the imaginary part of the dielectric

function ImðεÞ of Si obtained by different approaches, as
well as experimental data. The LR-ALDA and RT-ALDA
spectra are very similar: both seriously underestimate the
first absorption peak E1 around 3.2 eV [1,31]. In BSE, the
E1 peak is strongly enhanced compared to ALDA, though
still somewhat lower than experiment. A better agreement
between BSE and experiment could be achieved with a
much denser k grid or other improvements [64,65], but this
is not the main focus of this Letter.

It is evident from Fig. 1 that LRC dramatically improves
the ALDA spectrum: both LR- and RT-LRCþ curves show
double-peak structures, with an E1 peak height comparable
to E2, which agrees better with experiment than BSE. Both
LRCþ spectra also correct the overestimation beyond
4.5 eV by ALDA. The differences between the LR and
RT spectra are mainly due to the different k-point sampling
used in Qb@ll and YAMBO, as discussed in the SM [45].
Aside from these minor technical details, our results clearly
show that excitonic effects in materials with weakly bound
excitons, such as Si, can be well described with RT-TDDFT
using LRCþ.
RT-TDDFT is not limited to weak perturbations, but

allows us to explore ultrafast and nonlinear electron
dynamics. The LRCþ parameters can be assumed to remain
unchanged as long as we do not stray too far from the linear
regime. Instead of a delta-peaked uniform electric field, we
apply short laser pulses polarized along the z axis with
frequency 1.6 eV, sin2 envelope, and 10 fs pulse duration.
We consider weak and strong pulses with peak intensity
107 and 1011 W=cm2, respectively. Figure 2(a) shows that
the z component of the total macroscopic current density
jtotz propagated with LRCþ has a larger amplitude than with
ALDA. There are two reasons for the enhanced current
response: (i) LRC drastically increases the oscillator
strength at the absorption edge (see Fig. 1), leading to a
stronger coupling to the laser; (ii) the diamagnetic con-
tribution to the total current, Eq. (6), may be enhanced by
the LRC xc vector potential. While the system is driven by
the laser, the induced currents scale with the square root of
the intensity; the remaining current oscillations after the
end of the pulse are more pronounced at 1011 W=cm2,
indicating nonlinearity.
The associated dipole power spectra jPðωÞj2 (see SM

[45]) are shown in Fig. 2(b). At low laser intensity, ALDA
and LRCþ produce very similar spectra, with a dominant
peak at 1.6 eV and a smooth dropoff at higher frequencies.
Nonlinear effects become significant at 1011 W=cm2 pulse

FIG. 1. Optical spectra ImðεÞ of Si, obtained by LR- and RT-
TDDFT, compared with BSE and experiment [66]. The calcu-
lated spectra are scissor shifted for the onset to line up with
experiment (see SM for details [45]).

(a) (b)

FIG. 2. Response of Si to 10 fs laser pulses (frequency 1.6 eV,
polarized along z) with peak intensities 107 W=cm2 (top) and
1011 W=cm2 (bottom), comparing ALDA and LRCþ within RT-
TDDFT. (a) Induced current density jzðtÞ. (b) Dipole power
spectrum jPðωÞj2.
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intensity: the ALDA and LRCþ spectra both extend toward
higher frequencies, and there is a broad peak around 5 eV
(the third harmonic of the pulse). Overall, LRCþ gives a
more pronounced nonlinear response than ALDA, which is
in agreement with a study using time-dependent polariza-
tion DFT [67].
Next, we explore strongly bound excitons in insulators.

We begin with a chain of H2 molecules with a finite gap
(see SM [45]). Figure 3(a) shows that BSE yields a
pronounced excitonic peak around 3.6 eV which the
ALDA fails to reproduce. LR-TDDFTwith the LRC kernel
improves the spectra: for α ¼ 18.0, we obtain an excitonic
peak of similar height and shape as the BSE, but at a higher
energy. An even larger α would put the peak at the right
position, but with too much oscillator strength, consistent
with earlier studies of the LRC kernel [35]. Note that, here,
we set β ¼ 0 to avoid numerical difficulties in YAMBO when
combining LRC with ALDA, due to an enhanced sensi-
tivity to local-field effects in 1D.
For α ¼ 8.0, LR- and RT-TDDFT of the H2 chain are in

close agreement. However, we found that at α ¼ 18.0 the
RT calculation failed. Figure 3(b) shows that, at α ¼ 8.0,
the induced current is comparable to the ALDA current, but
at α ¼ 18.0, the current rapidly diverges.
To investigate this further, we now consider LiF. The

experimental optical spectrum [Fig. 3(c)] features a promi-
nent excitonic peak around 12.6 eV. LR-TDDFT with
LRCþ using α ¼ 7 and β ¼ 1 gives a blue-shifted exciton
at 13.5 eV; a larger value of α could be used to shift the
exciton down to the correct position, but with much
exaggerated peak height [35].

RT-TDDFT using LRCþ with the same parameters
ðα ¼ 7; β ¼ 1Þ appears to be developing an instability,
as indicated by the current density in Fig. 3(d), which keeps
increasing after 2 fs. The resulting LiF optical spectrum
[cyan curve in Fig. 3(c)] is peaked at 13.5 eV but has a
distorted shape. The current response can be stabilized by
decreasing α, and the excitonic peak can be shifted to the
correct position by increasing β, as illustrated in Figs. 3(c)
and 3(d). Indeed, comparing ðα ¼ 2.5; β ¼ 5.5Þ and
ðα ¼ 10−4; β ¼ 6.4Þ, we find that the latter produces the
best agreement with experiment. In this case, the excitonic
interactions arise from the up-scaled ALDA local-field
effects, like in the so-called contact exciton [69,70]. This
scaling approach is effective because of the tightly bound
excitons in LiF; local-field effects are much less important
for systems with weakly bound, delocalized excitons.
What is the reason for the LRC instabilities? The zero-

force theorem of TDDFT [8] states that the total force due
to xc scalar and vector potentials must vanish

0 ¼
Z

dr

�
−nðr; tÞ∇vxcðr; tÞ − nðr; tÞ ∂∂tAxcðr; tÞ

þ jðr; tÞ ×∇ ×Axcðr; tÞ
�
: ð7Þ

The ALDA satisfies the zero-force theorem.ALRC
xc is strictly

longitudinal, so the last term in Eq. (7) vanishes. From
Eq. (5), the second term inEq. (7) becomes−αN

R
t
0 dt

0j0ðt0Þ.
Thus, LRC produces a macroscopic xc force, which can
cause instabilities in the current oscillations for strongly
bound excitons due to their large oscillator strength, as seen
in H2 and LiF. This violation of the zero-force theorem is
also present in fLRCxc , but still allows one to obtain good
optical spectra via LR-TDDFT, albeit with an exaggerated
peak height for strongly bound excitons [35]. Instabilities
may show up during RT propagation, even if initiated with a
weak perturbation, due to self-amplification of small fluc-
tuations [71].
As a final illustration of RT-TDDFT, we now return

to a system with weakly bound excitons and consider a
more complex material, the perovskite CsGeCl3. To our

FIG. 3. Strongly bound excitons in an H2 chain (left) and
LiF (right). (a) ImðεÞ from BSE and TDDFT; (b) macroscopic
current density from RT ALDA and LRC with α ¼ 8 and 18;
(c) ImðεÞ from LRCþ in LR and RT, with α and β as indicated,
versus experiment [68]; (d) macroscopic current density from the
same three RT-LRCþ as in (c).

FIG. 4. Optical spectra of CsGeCl3 obtained by BSE and RT-
TDDFT using APBE and LRC�þ.
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knowledge, no experimental optical spectra of this material
are available. We adopt a cubic phase of Pm3̄m, where a Ge
atom substitutes the Pb atom in the popular CsPbCl3, which
allows us to neglect spin-orbit coupling.
Figure 4 shows the optical spectrum of CsGeCl3,

calculated using G0W0 þ BSE. The G0W0 band gap is
2.96 eV; the BSE spectrum displays a relatively weak
shoulder around 2.6 eV, and a dominant continuum exciton
peak at 3.5 eV. We compare with RT-TDDFT spectra
obtained using the adiabatic Perdew-Burke-Ernzerhof
(APBE) functional [72] and APBEþ LRC (LRC�þ) using
α ¼ 1.1. It is found that the APBE and LRC�þ spectra are
almost on top of each other beyond 4.6 eV, and are both
very similar to BSE in this range. At lower energies, APBE,
a semilocal functional, significantly underestimates Im(ε);
this is similar to the failure of ALDA for Si. On the other
hand, the overall spectral shape of LRC�þ is very close to
BSE, even reproducing the weak shoulder around 2.8 eV.
The associated induced current densities (see SM [45]) are
well behaved and stable, and no β scaling is needed.
Conclusions.—In this Letter, we have demonstrated that

TDDFT can describe excitons in periodic solids by
propagating the time-dependent Kohn-Sham equation fol-
lowing an initial short-pulse excitation. LR-TDDFT has
long been known to be capable of producing excitonic
optical spectra using xc kernels with the appropriate long-
range behavior. Here, we have shown how the simplest of
these, the LRC kernel, can be converted into an xc vector
potential featuring the macroscopic current density and an
adjustable parameter, α; the additional computational cost
beyond the ALDA is negligible.
Applications to Si, H2 chain, LiF, and CsGeCl3 show that

LR- and RT-TDDFT are consistent in the sense that they
produce essentially the same optical spectra in the weakly
perturbed regime, but RT-TDDFT can be applied beyond
the linear regime to describe ultrafast and nonlinear exciton
dynamics. However, the LRC xc functional has its limi-
tations: in materials with strongly bound excitons, it can
lead to instabilities in the induced currents, which is a
consequence of violating the zero-force theorem. In mate-
rials with weakly bound or continuum excitons, no such
problems occurred.
This study opens up multiple paths toward TDDFT

studies of exciton dynamics in bulk materials and nano-
structures. An important task for future research will be to
find parameter-free xc functionals for RT-TDDFT beyond
LRC, or adjust LRC to satisfy the zero-force theorem. Our
RT-TDDFT approach can be combined with recently
developed visualization methods for exciton wave func-
tions [59], and it is possible to study exciton relaxation
effects by coupling to nuclear dynamics at the Ehrenfest
level [23].
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