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Many advancements have been made in the field of topological mechanics. The majority of the work,
however, concerns the topological invariant in a linear theory. In this Letter, we present a generic
prescription to define topological indices that accommodates nonlinear effects in mechanical systems
without taking any approximation. Invoking the tools of differential geometry, aZ-valued quantity in terms
of a topological index in differential geometry known as the Poincaré-Hopf index, which features the
topological invariant of nonlinear zero modes (ZMs), is predicted. We further identify one type of
topologically protected solitons that are robust to disorders. Our prescription constitutes a new direction of
searching for novel topologically protected nonlinear ZMs in the future.
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Mechanical systems offer a remarkable connection
between physics and engineering. Through their simplicity,
they have inspired both ideas at the foundation of theo-
retical physics and a sense of control over our physical
world. In the recent field of topological condensed matter,
following hints that topology can play a role in nonlinear
fine-tuned mechanical systems [1], Kane and Lubensky [2]
uncovered a connection between topological insulators [3–
6] and linearized ball-and-spring models. Given the impor-
tance in the field of metamaterials [7–21] and magnetics
[22,23], they realized if constraints define the system, zero
modes (ZMs) can be topologically protected by a TKNN-
like topological invariant [24].
It was quickly realized that Kane and Lubensky’s ZMs in

the case of a chainmodel they construct can survive back into
the nonlinear regime and become bulk solitons [25]. But a
formally identical origami systemwas identified that does not
exhibit these solitons [26]. More nonlinear ZMs were found
in mechanical systems in numerical simulations [27,28]. In a
one-dimensional chain, a domainwall separating two distinct
polarizations can be identified by constructing a sequence
of consecutive maps on the space of ZMs of a single unit
cell [29]. However, that does not quite guarantee that this
domain wall can move continuously along the chain like a
soliton. Thus, the existence of a soliton relies on the exact
parameters of a model [30]. To the best of our knowledge,
however, it remains unclear if solitons observed in generic
mechanical systems are always topologically protected or
not, and if so, what is the topology to classify them?
In this Letter, we develop an exact theory to study

the topological protection of the kinematics of periodic

mechanisms satisfying holonomic constraints such as those
that arise in, e.g., linkages and origami. Using the concept
of differential geometry, our theory predicts the existence
of a Z-type topological index μ or ν. To illuminate its
applications, we further use this topological index to
generate another topological index we call I that reveals
whether or not a topologically protected ZM can propagate
through the system. Applying this to the Kane-Lubensky
(KL) chain, we realize the topology to classify the (two)
distinct phases of the KL chain, namely the “flipper” and
the “spinner,” and further show that the existence of the
spinner soliton is topologically protected and robust to
disorders (unlike the flipper). In distinction, the origami
chain does not support any soliton despite the superficial
similarity of its linear ZMs to those of the KL chain.
We start by characterizing the type of mechanical system

we are interested in. We assume that the state of the system
can be described by generalized degrees of freedom,
θ ¼ ðθ1; θ2;…; θnÞ, and that the system is characterized
by a set of (spring) extensions eðθÞ ¼ ½e1ðθÞ;…; emðθÞ�.
While the elastic energy of such a system can be written
as EðθÞ ¼ P

i kieiðθÞ2 for a set of moduli ki > 0, here we
will be interested only in the ground state configurations
specified by θ̄ such that eðθ̄Þ ¼ 0. If we work with a
mechanical linkage or a spring network as in Ref. [2], we
can think of θ representing the positions of the vertices of
our network and eiðθÞ the extension of the springs (from
their equilibrium lengths). In this language, the Jacobian
∂eiðθÞ=∂θj is termed the rigidity matrix.
Before presenting our prescription of defining topologi-

cal indices, it is useful to review two examples that pose
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some apparent paradoxes in defining the topological
invariant of the linear ZMs. First, for the KL chain, it is
often easier to express the generalized coordinates in terms
of the rotation angle of a series of rotors so that θi is the
angle between the ith rotor and the vertical axis as shown in
Fig. 1(a). The extension of the ith spring that connects the
ith rotor with the ðiþ 1Þth rotor and then takes the form
eiðθÞ ¼ fðθi; θiþ1Þ, where

fðθi; θiþ1Þ ¼ ½ðaþ r sin θiþ1 − r sin θiÞ2
þ ðr cos θiþ1 þ r cos θiÞ2�1=2 − L; ð1Þ

where a, r, and L are the distance between two consecutive
pivot points, the radius of the rotors, and the equilibrium
length of the springs, respectively. For an open chain of n
springs (and nþ 1 rotors), if we choose θnþ1 ¼ θ1, then we
have exactly as many constraints as the degrees of freedom,
making the system isostatic.
In the second example of the origami chain [26], we

instead use θi to denote the supplement of the dihedral
angle of one of the folds of each vertex, also called the fold
angle [Fig. 1(b)]. In this case,

fðθi; θiþ1Þ ¼ Asin2ðθi=2Þ − Bsin2ðθiþ1=2Þ þ ϵ; ð2Þ

where 0 < A < 1, 0 < B < 1, and ϵ are defined in
Ref. [31]. Although it is straightforward to generalize
the above equations to any periodic structure, for simplicity
we specialize to the examples mentioned above focusing on
Eqs. (1) and (2) for the remainder of this Letter.
In both the KL chain and the origami chain, if we assume

a uniform solution of eðθ̄Þ ¼ 0, following Ref. [2], the
polarization is defined as the integer

Q ¼ 1

2πi

Z
π

π
dq

∂
∂q ln ½∂1fðθ̄; θ̄Þ þ ∂2fðθ̄; θ̄Þeiq�; ð3Þ

where ∂a implies the derivative with respect to the ath
variable in the argument of f. When j∂2fðθ̄; θ̄Þj >
j∂1fðθ̄; θ̄Þj, Q ¼ 0 and when j∂2fðθ̄; θ̄Þj < j∂1fðθ̄; θ̄Þj,
Q ¼ 1. These two values of Q define two distinct topo-
logical phases. For finite systems, the bulk is rigid for both
Q ¼ 0 and 1; however, the feature that distinguishes these
two phases is the location of the linear ZM.
The behavior above is exhibited by the linear ZMs in

both the KL chain and the origami chain, as it should.
But in the KL chain (and not the origami chain), certain
nonlinear deformations can propagate across the system,
resulting in the edge mode appearing on the other side. In
that sense, the polarization defined by Eq. (3), though an
integer, is not necessarily topologically robust.
A topological index for isostatic systems.—To under-

stand why the two models discussed above behave so
differently in the presence of nonlinearity, we introduce a
prescription to define topological indices in terms of the
Poincaré-Hopf index [32] that accommodates nonlinear
constraints as well. The definition of the index involves a
generic nonlinear map eðθÞ [Eqs. (1) and Eq. (2) are two
examples we are focused on in this work] that can be
thought of as the vector field on the space of generalized
coordinates as shown in Fig. 2(a). In the isostatic case
(m ¼ n), for a solution θ̄ satisfying eðθ̄Þ ¼ 0, we can define
an index μðθ̄Þ by computing the winding number of the
map eðθÞ on the (n − 1)-dimensional sphere enclosing θ̄, Sθ̄
by integrating the differential form

μðθ̄Þ ¼ 1

ðn − 1Þ!An−1

I
Sθ̄

ei1dei2 ∧ … ∧ deinϵ
i1;i2;…;in

ðe21 þ e22 þ � � � þ e2nÞn=2
; ð4Þ

where An−1 is the surface area of a unit (n − 1)-dimensional
sphere. When, for example, n ¼ 2, it yields the so-called

FIG. 1. (a) The KL chain has an edge mode on either the left or
right edge. (b) The origami chain has an edge mode on either the
left or right edge.

FIG. 2. (a) The vector field eðθ̄Þ is indicated by arrows. The
winding number μðθ̄Þ is a topological index that measures how
many times the vector field rotates along Sθ̄. (b) The total
intersection number I is a homotopy invariant of a ZM and
counts the minimal number of periodic configurations along that
ZM. (c) A ZM with a deformed trajectory has the same total
intersection number as (b).
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first Chern number, which frequently appears in classifying
the topology in electronic band structures. μðθ̄Þ is well
defined for any isolated solution θ̄ even when the Jacobian
is not full rank. It is also known as the degree of a map [33],
which implies μðθ̄Þ predicts the minimum number of
nonlinear ZMs that would pass through the configuration
θ̄ after releasing one constraint.
When the Jacobian is full rank, μðθ̄Þ ¼ sgn½detð∂eiðθ̄Þ=

∂θjÞ� [34]. Under this condition, the configuration θ̄ is
structurally stable, meaning that μðθ̄Þ is invariant under
small, continuous deformations of the constraint functions
eðθÞ. The idea of topological protection in a linear theory
can now be cast as the following: without any symmetry,
the phonon spectrum is characterized by a Z2 invariant
protected by a bulk gap that closes when the Jacobian is not
full rank.
A deeper physical meaning of μðθ̄Þ relies on the form of

constraints. For example, in the KL and origami chain with
periodic boundary conditions, for a uniform solution θ̄,
μPBCðθ̄Þ can be simplified to μPBCðθ̄Þ ¼ sgnf½∂1fðθ̄; θ̄Þ�n−
½−∂2fðθ̄; θ̄Þ�ng, which depends only on the magnitude
of ∂1fðθ̄; θ̄Þ and ∂2fðθ̄; θ̄Þ. Consequently, μPBCðθ̄Þ ¼ 1

when j∂1fðθ̄; θ̄Þj > j∂2fðθ̄; θ̄Þj and μPBCðθ̄Þ ¼ −1 when
j∂1fðθ̄; θ̄Þj < j∂2fðθ̄; θ̄Þj. Therefore, μPBCðθ̄Þ ¼ 2Q − 1,
where Q is the topological polarization discovered by
Kane and Lubensky [2].
A topological index for nonisostatic systems.—So far,

the topological index μ discussed above applies only to an
isolated zero-energy configuration θ̄ in an isostatic system.
To capture the topology of a nonlinear ZM in a nonisostatic
system, we now extend our consideration to derive another
similar topological index ν. To do so, we look at this
topological index from another perspective by first defining
a tangent d-form

Ti1���id ¼ ϵi1���idj1���jn−d∂j1e1 � � � ∂jn−den−d; ð5Þ

where d denotes the dimension of the nonlinear ZM.
Because Ti1���idðθi1 � � � θidÞ ¼ 0 for any vector θij normal to
the space of ZMs, we can think of Ti1���id as defining the
tangent space of nonlinear ZMs. For an open KL chain,
the number of constraints is one less than the number of
the degrees of freedom, and so d ¼ 1. Then T is a vector
field that is everywhere tangent to a nonlinear ZM. In this
case, the nonlinear ZM can be found as the solution to the
first-order differential equation ∂sθðsÞ ¼ T½θðsÞ�. So long
as TðθÞ is a smooth nonvanishing function of θ, the
integral curves of TðθÞ will be smooth as well. For any
surface not parallel to the tangent TðθÞ, we can define an
intersection number at the point θ̄ where the ZM intersects
with the surface as νðθ̄Þ ¼ sgn½Tðθ̄Þ · N̂ðθ̄Þ�, where N̂ðθ̄Þ is
the unit normal to the surface at θ̄. Alternatively, we can
define a vector gðθÞ ¼ ðe1; e2;…; en−1; hÞ, where h is

the function describing the surface. Then νðθ̄Þ can be
computed as

νðθ̄Þ ¼ 1

ðn − 1Þ!An−1

I
Sū

gj1dgj2 ∧ � � � ∧ dgjnϵ
j1j2…jn

ðg21 þ g22 þ � � � þ g2nÞn=2
; ð6Þ

similar to the way μ was defined earlier in Eq. (4). This
results in νðθ̄Þ ¼ sgn½det∇gðθ̄Þ� when the Jacobian of g,
denoted ∇gðθ̄Þ, is full rank. The function h can also be
thought as an auxiliary constraint used to obtain infor-
mation of a nonlinear ZM. For example, in the KL and
origami chain, when h ¼ en ¼ fðθn; θ1Þ as defined pre-
viously, νðθ̄Þ would be μPBCðθ̄Þ.
Topological distinctions between the KL chain and

origami chain.—Based on the earlier discussion of μ, there
always exists at least one nonlinear ZM passing through a
uniform solution in both the open KL and open origami
chain because μPBC ¼ �1 for each uniform solution in
both cases. However, to understand whether this nonlinear
ZM can propagate from one site to another, we need to
specialize to a local topological index νlocðθ̄Þ in a single cell
(which contains two sites with one constraint) with a two-
dimensional space specified by ðθ1; θ2Þ and consider h
specified by θ2 − θ1 ¼ 0. In this example, every time the
nonlinear ZM for a single cell (SCZM) crosses this plane at
θ̄, we can associate an index νlocðθ̄Þ with the intersection
point as defined above [see Fig. 2(b)]. With this in mind,
for continuous deformations of the trajectory of the SCZM
[see Fig. 2(c)], new uniform configurations can be created
or annihilated in pairs of opposite indices, but the total
intersection number I ¼ P

i νlocðθ̄iÞ of the SCZM remains
invariant.
The idea of topological protection, defined as it is in

terms of an inherently linear concept of the phonon
spectrum as highlighted before, can be carried over in a
robust way to nonlinear mechanical systems as follows: the
space of ZMs for one set of constraints can be continuously
deformed into the space of ZMs of another set of con-
straints as long as no ZM intersects with others or itself
during deformations. Then it will become clearer why the
KL chain and the origami chain behave so differently
despite their superficial similarity after computing the
intersection number of a single cell.
First, Figs. 3(a) and 3(b) show the solutions to Eq. (1) for

a single cell of the KL chain (consisting of a pair of rotors).
Uniform solutions, namely θ1 ¼ θ2 (there are four), cor-
respond to the points where the nonlinear SCZMs cross the
plane θ1 − θ2 ¼ 0. We note that, in the nonlinear model, the
trajectory of a nonlinear SCZM passes through either two
or all four of these (uniform) solutions depending on the
values of L, r, and a. The total intersection number I of a
nonlinear SCZM satisfies the following condition: when
a < L < 2r − a, there are two distinct SCZMs with
I ¼ þ2 [blue in Fig. 3(a)] and I ¼ −2 [red in Fig. 3(a)].
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Thus, each SCZM passes two distinct uniform solutions at
least twice and these two uniform solutions are necessarily
connected via the trajectory of the SCZM. This case is
known as the “spinner” phase of the KL chain, charac-
terized by spinner solitons whose existence is topologically
protected. When 2r − a < L < 2rþ a, on the other hand,
we have only one SCZM with a total intersection number
I ¼ 0 [this SCZM passes through all four solutions as in
Fig. 3(b)]. This is dubbed the “flipper” phase. In this phase,
the trajectory of the SCZM can be continuously deformed
by tuning, e.g., L, such that all four solutions get annihi-
lated in pairs of opposite intersection numbers exactly at
L ¼ 2rþ a, and no solution exists beyond that.
Next, we consider the origami chain. A single cell in this

model is described by Eq. (2). The uniform solutions are
given by the zeros of fðθ; θÞ ¼ ðA − BÞsin2ðθ=2Þ þ ϵ,
which exist only when ðB − AÞ=ϵ > 1. As shown in
Figs. 3(c) and 3(d), there are two distinct regimes:
(i) 0 < ϵ < A − B and (ii) A − B < ϵ < 0, both of which
have two uniform solutions with opposite sign of νloc
and the two SCZMs correspond to the total intersection
number of I ¼ þ1 [blue in Fig. 3(c) or 3(d)] or I ¼ −1 [red
in Fig. 3(c) or 3(d)]. As seen in Figs. 3(c) and 3(d), each
SCZM crosses the line defined by θ1 ¼ θ2 at least once.
If the system is distorted, it is possible to cross this line
multiple times, but the total intersection number remains

unchanged. We conclude that the existence of uniform
solutions is, indeed, topologically protected. To eliminate
them, it is necessary to distort the system through a
topological phase transition by joining the trajectories of
the two SCZMs. Ultimately, this requires tuning the system
through one of the two situations: ϵ ¼ 0 or A − Bþ ϵ ¼ 0.
It is clear that when a SCZM has a total intersection

number jIj ≥ 2, it must have at least two uniform solutions
joined by a smooth trajectory. However, this does not
immediately extend to a larger chain of n (n > 2) unless
the following (sufficient) condition P is met: for a given
SCZM, either the map from θi to θiþ1 ∀ i or the reverse map
is injective.
Lets take the spinner for an example and denote a ZM for

the n-site chain, which contains n rotors and n − 1 springs,
by Cn. In this notation, the black curve on the bottom plane
in Fig. 4(a) is C2 and the red curve is C3. Because in this
case we have jIj ¼ 2, the projection of C3 onto a constant
θ3 plane always yields C2 (it, in fact, extends to jIj ≥ 2).
This statement can be understood in the following way:
We are looking for a solution for fðθ2; θ3Þ ¼ 0 provided
fðθ1; θ2Þ ¼ 0. A sufficient condition for this is that the
solution of fðθ2; θ3Þ ¼ 0 on the θ2 − θ3 plane wraps

FIG. 3. (a),(b) are the spaces of ZMs of a single cell for the KL
chain. (c),(d) are the spaces of ZMs of a single cell for the origami
chain. The color is only a label (blue for I > 0 and red for I ≤ 0)
and does not have a quantitative meaning.

FIG. 4. (a) The ZM for the n ¼ 2, 3 KL chain (the spinner
case). The black curve C2 on the bottom plane is a single loop
on a two-dimensional torus, and the red curve C3 is a single
loop on a three-dimensional torus. (b) A soliton on the
disordered KL chain.
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around θ2 at least once (this holds when jIj ≥ 2), guaran-
teeing a θ3 for a given θ2 that also satisfies fðθ1; θ2Þ ¼ 0. If
the above condition is met, there must exist at least one θ3
for a given ðθ1; θ2Þ that satisfies both the constraints. Thus,
for each point on the black curve C2, we can always find at
least one point on the red curve C3 projected onto it.
We can now prove that the two uniform solutions are

connected by C3, which we have shown to hold for C2

previously. This we prove by contradiction. If we assume
that there are two disconnected parts of C3 while C2 is
connected, there must exist two points that have the same
θ1 and θ2 but distinct θ3. However, this contradicts the fact
that the map from θ3 to θ2 is injective, and thus C3 must be
connected. The argument can easily be generalized to Cn
for n > 3. Thus, we conclude that there must exist at least
two uniform solutions joined by a ZM in a n-site chain.
This ZM is a soliton (for the nonlinear model) that is
topologically protected and robust to disorders as long as
each SCZM corresponds to a total intersection number
jIj ≥ 2 and satisfies the condition P mentioned above. We
emphasize, a soliton of this kind exists even in a disordered
(a < Li < 2r − a, Li chosen randomly) KL chain that has
the total intersection number I ¼ �2 in each cell as shown
in Fig. 4(b).
We conclude by emphasizing that new topological

indices can be generated in similar manners following
our prescription to classify nonlinear ZMs. For instance, a
n − 1-dimensional sphere around an isolated zero-energy
configuration (solution) is chosen in this work as the base
manifold to construct a bundle with Z-type topological
invariant. For higher-dimensional manifolds of such sol-
utions, different choices of the base manifold can lead to
different types of topological invariants [35]. Exploring the
physical significance of those topological indices consti-
tutes a new direction of searching for novel topologically
protected nonlinear ZMs in the future.
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