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Magnetic oscillations of Dirac surface states of topological insulators are typically expected to be
associated with the formation of Landau levels or the Aharonov-Bohm effect. We instead study the
conductance of Dirac surface states subjected to an in-plane magnetic field in the presence of a barrier
potential. Strikingly, we find that, in the case of large barrier potentials, the surface states exhibit pronounced
oscillations in the conductance when varying the magnetic field, in the absence of Landau levels or the
Aharonov-Bohm effect. These novel magnetic oscillations are attributed to the emergence of super-resonant
transport by tuning the magnetic field, in which many propagating modes cross the barrier with perfect
transmission. In the case of small and moderate barrier potentials, we identify a positive magnetoconductance
due to the increase of the Fermi surface by tilting the surface Dirac cone. Moreover, we show that for weak
magnetic fields, the conductance displays a shifted sinusoidal dependence on the field direction with period π
and phase shift determined by the tilting direction with respect to the field direction. Our predictions can be
applied to various topological insulators, such as HgTe and Bi2Se3, and provide important insights into
exploring and understanding exotic magnetotransport properties of topological surface states.
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Introduction.—Topological insulators host gapless sur-
face states which stem from nontrivial bulk topology [1–3].
These surface states can be modeled by a single Dirac cone.
Over the last two decades, topological insulators have been
discovered in numerous materials [4–12] including HgTe
[13], Bi1−xSbx [14], and Bi2Se3 [15–18]. Magnetotransport
of Dirac surface states has been an active research topic
[19–51], theoretically and experimentally, since the discov-
ery of topological insulators. It provides vital features, which
include particularly magnetic oscillations, to detect and
characterize Dirac surface states. Magnetic oscillations are
usually associated with the formation of Landau levels or the
Aharonov-Bohm effect [19–24,33–38]. Thus, a fundamen-
tally intriguing question is whether magnetic oscillations of
topological surface states can appear in the absence of
Landau levels or the Aharonov-Bohm effect. In slab geom-
etries of topological insulators, in-plane magnetic oscilla-
tions as a function of field strength are oftentimes observed
[44,52,53]. To the best of our knowledge, a convincing
explanation of these oscillations is still lacking.
Notably, in typical topological insulators, electron-hole

symmetry in the energy spectrum of surface states is
broken by the presence of higher-order momentum

corrections [54–56]. To fully understand the transport
properties of surface states in realistic systems, the con-
sideration of this electron-hole asymmetry is important.
Interestingly, the interplay of electron-hole asymmetry
and in-plane magnetic fields tilts the surface states at
low energies [50].
In this Letter, we study the conductance of topological

surface states in the presence of a barrier potential and
external in-plane magnetic fields, taking into account the
electron-hole asymmetry of the energy spectrum. We find
that for small and moderate barrier potentials (comparable
to the Fermi energy), the surface states exhibit a positive
magnetoconductance due to the increase of the Fermi
surface by tilting in any direction. Remarkably, for larger
barrier potentials, super-resonant transport of surface states
appears by tuning the magnetic field, which enables many
surface propagating modes to tunnel through the barrier
without backscattering. This super-resonant transport
results in pronounced oscillations in the conductance as
strength or direction of the magnetic field are varied.
Moreover, we show that for moderate magnetic fields,
the conductance is a sinusoidal function of field direction
with period π and phase shift dependent on the angle
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between tilting and field directions. Our predictions are
applicable to a variety of topological insulators including
HgTe and Bi2Se3.
Effective Hamiltonian of surface states.—The states of a

topological insulator on a surface can be described by a
single Dirac cone [15,54,55],

HðkÞ ¼ mk2 þ vðkxsy − kysxÞ; ð1Þ

where k ¼ ðkx; kyÞ are momenta in the vicinity of the Γ
point, v is the Fermi velocity, and sx and sy are Pauli
matrices acting on spin space. Moreover, in certain topo-
logical insulators, for instance, HgTe with zinc-blende
crystal structure, bulk inversion symmetry is broken,
leading to extra terms HBIA¼vbðkxsxþkysyÞþγkxky [57].
Note that we have included the quadratic terms in momen-
tum mk2 and γkxky, which preserve time-reversal sym-
metry. These terms are often ignored in previous studies for
simplicity [65]. However, they break electron-hole sym-
metry in the energy spectrum and can lead to interesting
physics as we show below.
Applying an in-plane magnetic field B ¼ Bðcos θ; sin θÞ

introduces a Zeeman termHZ ¼ gμBB · s=2, where g is the
g factor, μB is the Bohr magneton, and B and θ denote the
strength and direction of the magnetic field, respectively.
The Zeeman term not only shifts the Dirac cone away from
the Γ point in momentum space but also tilts the Dirac
cone [50]. Considering that vb is typically much smaller
than v [66], we can find the position shift of the Dirac point
as ks ¼ ksð− sin θ; cos θÞ, with ks ¼ gμBB=2v. Near the
Dirac point, the effective model for surface states can be
written as [57]

HðkÞ ¼ vðk̃xsy − k̃ysxÞ þ txk̃x þ tyk̃y; ð2Þ

where k̃ ¼ k − ks, and the tilting vector t≡ ðtx; tyÞ is
given by

t ¼ ksðγ cos θ − 2m sin θ; 2m cos θ − γ sin θÞ: ð3Þ

The eigenenergies are tilted as E�ðkÞ ¼ t · k̃� vjk̃j. The
tilting strength jtj is proportional to the field strength, and
the tilting direction is controllable by the field direction.
We focus on the realistic case with small tilting jtj < jvj
throughout.
Transmission probability.—We consider the surface

states with a barrier potential V0 extending over a length
of L in the x direction, as sketched in Fig. 1. The in-plane
magnetic field is applied to the whole system. This setup
can be described by

Htot ¼ Hð−i∂rÞ − EF þ VðxÞ; ð4Þ

with EF as the Fermi energy, and the local electronic
potential VðxÞ ¼ V0 for jxj⩽L=2 and 0 otherwise [67].

V0 can be created by local gating [69]. It can be positive or
negative. For simplicity, we assume the system to be large
in the y direction such that the transverse momentum ky is
conserved.
To study the transport properties of the system, we

employ the scattering approach. In each region, we find two
eigenstates for given ky and energy E. In the regions away
from the barrier, their wave functions can be written as

ψ�ðx; yÞ ¼ eik̃yyeik̃�xð eiθ� ;−1 ÞT=N �; ð5Þ

where eiθ� ≡vðk̃yþ ik̃�Þ=ðEky − txk̃�Þ, Eky ¼EþEF−tyk̃y,

N � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jeiθ�j2

p
, and the wave numbers k̃� in the x

direction read as

k̃� ¼
h
−txEky � v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
ky
− ðv2 − t2xÞk̃2y

q i.
ðv2 − t2xÞ: ð6Þ

In the barrier region, the wave functions have the same
form as Eq. (5) but with Eky replaced by EB

ky
¼ Eky − V0.

Correspondingly, we use superscript B to indicate the
angles θB� and wave numbers k̃B� inside the barrier region.
The scattering state of injecting an electron from the one

lead to the junction can be expanded in terms of the basis
wave functions, Eq. (5). Matching the wave function of the
scattering state at the interfaces, we derive the transmission
coefficient as

tk̃y ¼ e−ik̃þLeiðk̃
B
−þk̃BþÞLðeiθþ − eiθ−ÞðeiθBþ − eiθ

B
−Þ=Z; ð7Þ

where Z¼eik̃
B
þLðeiθþ−eiθ

B
þÞðeiθ− −eiθ

B
−Þ−eik̃

B
−Lðeiθþ−eiθ

B
−Þ

ðeiθ− −eiθ
B
þÞ [70]. The transmission probability is then

given by Tk̃y
¼ jtk̃y j2. More details of the derivation are

presented in the Supplemental Material [57]. For the
incident modes with k̃y ¼ 0, we always have θ� ¼ θB� ¼
�π=2 and hence Tk̃y¼0 ¼ 1. This perfect transmission

results from spin conservation and is related to Klein
tunneling [58]. Notably, without tilting, the results are
independent of the magnetic field. This indicates that a
simple position shift of the Dirac cone in momentum space
does not change the transport properties of surface states.

FIG. 1. Schematic of surface states (cyan and magenta) of a
topological insulator (gray) with a barrier potential V0 extending
over a length of L. An in-plane magnetic field B (blue arrows) is
applied to the system.
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Positive magnetoconductance.—With the transmission
probability, the (differential) conductance G (per unit
length) at zero temperature and zero bias voltage can be
evaluated as

G ¼ e2

h

Z
dk̃y
2π

Tk̃y
ðE ¼ 0Þ; ð8Þ

where the sum runs over all modes distinguished by k̃y.
We first look at the case of small and moderate barrier

potentials, i.e., jV0j≲ jEFj, as shown in Fig. 2. Notably,
G increases as we increase the tilting strength in any
direction. Recalling that the tilting strength grows
linearly with increasing magnetic field B, this indicates a
positive magnetoconductance. For small barrier potentials,
jV0j ≪ jEFj, G increases monotonically with increasing B.
A larger barrier potential suppresses G and induces slight
oscillations. However, G increases overall, with increasing
B [Fig. 2(a)]. These oscillations are closely related to the
super-resonant transport of tilted surface electrons, which
we discuss later.
The positive magnetoconductance can be attributed to

the enhanced Fermi surface of tilted surface states. To
understand this, it is instructive to consider the zero-barrier
limit V0 ¼ 0. In this limit, all propagating modes transmit
through the junction without reflection. Thus, the conduct-
ance is simply given by the number Nk of propagating
modes, i.e., G ¼ ðe2=hÞNk. Nk is determined by the size
of the Fermi surface in the ky direction, as illustrated in
the inset of Fig. 2(b). Tilting the surface Dirac cone in any
direction enlarges the Fermi surface and hence the number
of propagating modes. As shown by the circles in Fig. 2(b),
we calculate Nk numerically as a function of the tilting
strength in three different directions as considered in
Fig. 2(a). Evidently, this dependence nicely agrees with

the magnetoconductance (solid curves). When the tilting
occurs in the x or y direction, we can find Nk analytically
from the tilted spectrum. Namely, Nk ¼ jEFj=ðπ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 − t2x

p
Þ

for tilting in the x direction, and Nk ¼ jvEFj=½πðv2 − t2yÞ�
for tilting in the y direction.
Super-resonant transport and conductance oscillations.—

Now, we consider larger barrier potentials, jV0j > jEFj,
and analyze the magnetic oscillations of the conductance.
These oscillations can be understood as the emergence of
super-resonant (transport) regimes of surface states, where
many propagating modes perfectly transmit through the
barrier at the same magnetic field (i.e., the same tilting). To
make this clearer and simplify the analysis, we first focus
on the large barrier limit, jV0j ≫ jEFj. In this limit, we can
approximate θB� ≈�π=2 in Eq. (7) and simplify

Tk̃y
¼ 1 − cosðθþ − θ−Þ

1 − sin θþ sin θ− − cos½ðk̃Bþ − k̃B−ÞL� cos θþ cos θ−
:

ð9Þ

From this expression [more generally Eq. (7)], we find that
the barrier becomes transparent for the mode with index k̃y
when the resonance condition, sin½ðk̃Bþ − k̃B−ÞL=2� ¼ 0, is
fulfilled. Using the expressions for k̃B� in Eq. (6), the
resonance condition reads explicitly as

ðV0 − tyk̃yÞ2 − ðv2 − t2xÞk̃2y ¼ ½nπðv2 − t2xÞ=ðvLÞ�2 ð10Þ

with n an integer. This means that an electron acquires
a phase shift 2nπ in one round trip between the
interfaces [71].
When the tilting is in the junction (i.e., x) direction, we

find the solutions of tx to Eq. (10) as

tx ≈�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 − jvV0jL=πn

q
ð11Þ

for integers n > jV0L=πvj. Strikingly, these solutions
are independent of the mode index k̃y [72]. This indicates
the super-resonant regimes where all propagating modes
with different k̃y exhibit perfect transmission. As a
result, we observe resonance peaks in Tk̃y

and thus the

maximal conductance Gmax ¼ ðe2=hÞNk at tx (∝ B)
determined by Eq. (11). Moreover, we find that at
tx ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 − jvV0jL=½πðnþ 1=2Þ�

p
, all modes have

instead the lowest transmission probabilities given by
Tk̃y

¼ 1 − ðv2 − t2xÞk̃2y=E2
F [57]. Summing over all modes,

we obtain the minimal conductance as Gmin¼ð2e2=3hÞNk.
Therefore, we observe pronounced oscillations of G with
magnitude ΔGosc as large as one third of the maximal
conductance:

ΔGosc ¼ Gmax=3: ð12Þ

(a) (b)

FIG. 2. (a) Conductance G (in units of e2kF=πh with
kF ¼ jEF=vj) as a function of tilt strength tx (for ty ¼ 0, blue),
ty (for tx ¼ 0, green), and tx ¼ ty ¼ t (magenta) for EF ¼
100v=L and V0 ¼ 0 (solid), 0.3EF (dotted), and EF (broken),
respectively. (b) Number Nk of propagating modes (in units of
kF=π) as a function of tx (for ty ¼ 0), ty (for tx ¼ 0), and
tx ¼ ty ¼ t, respectively. Inset: Fermi surfaces for t ¼ ð0.5; 0Þv,
ð0; 0.5Þv, and ð0.5; 0.5Þv.
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Interestingly, the values of Gmax, Gmin, and ΔGosc (in units
of Nk) are universal and independent of the potential V0

and length L of the barrier [73]. Considering the increase
of Nk, when strengthening B, ΔGosc increases. In contrast,
according to Eq. (11), the separations between the con-
ductance peaks depend strongly on the product V0L,
whereas they are insensitive to EF. Moreover, they
decrease with increasing B. All these results are in
accordance with our numerical results displayed in
Figs. 3(a), 3(b), and 3(g).
When the tilting is in the transverse (i.e., y) direction,

the solutions to Eq. (10) are given by ty ¼ V0=k̃y −

v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðπn=k̃yLÞ2

q
. For n close to nc ≡ ½jV0L=πvj�, the

greatest integer less than jV0L=πvj, we find that most of the
propagating modes exhibit a resonance condition at

ty ≈�ðjvV0jL − πnv2Þ=jEFLj: ð13Þ

Hence, in this tilting direction, we also observe the
resonance peaks and pronounced oscillations in the con-
ductance [Fig. 3(d)]. In contrast with the case with tilting
in the junction direction, the separations between the
conductance peaks are sensitive not only to L and V0

individually, but also to EF. Moreover, Eq. (13) indicates
that the separations between the conductance peaks are
almost constant with respect to B. However, as B increases,

the resonance positions for different propagating modes
become more extended [Figs. 3(c) and 3(h)]. Consequently,
the magnitude of oscillations is strongest for small B but
suppressed for large B.
For the general case with the tilting direction deviating

from the x and y directions, tx ¼ εty with ε ≠ 0, we can
also observe magnetoconductance oscillations [Figs. 3(e)
and 3(f)]. These oscillations can be similarly attributed to
the super-resonant transport of surface states as varying B.
However, they are less regular, compared with the two
special cases discussed above. The oscillations are aperi-
odic in B, and the positions of the peaks become hard to
predict in general.
Note that although we focus on the large barrier limit in

the above analysis, the conductance oscillations remain
pronounced even when the barrier potential is of the same
order as the Fermi energy, jV0j≳ jEFj [see Fig. 2(a) and
Sec. VI in the Supplemental Material [57] ].
Dependence on field direction.—As we have discussed

before, the conductance G depends on the tilting direction
which, in turn, is determined periodically by the field
direction θ, according to Eq. (3). Therefore, G depends
periodically on θ. This field-direction dependence stems
from two origins: (i) the anisotropic Fermi surface and
(ii) the barrier transparency for conducting channels. In
Fig. 4, we calculate numerically G as a function of θ.
Several interesting features can be observed.

(g)

(h)

(c)

(d) (f)

(e)(a)

(b)

FIG. 3. (a) Transmission probability density against k̃y and tx for ty ¼ 0. (b) Conductance G as a function of tx for ty ¼ 0.
(c) Transmission probability density against k̃y and ty for tx ¼ 0. (d)G as a function of ty for tx ¼ 0. (e) Transmission probability density
against k̃y and tx ¼ ty ¼ t. (f) G as a function of tx ¼ ty ¼ t. In (b), (d) and (e), the peaks (marked by magenta arrows) of G correspond
to the super-resonant regimes. (g) Solutions of tx to Eq. (10) for ty ¼ 0 and different integers n and mode indices k̃y. (h) Solutions of ty to
Eq. (10) for tx ¼ 0 and different n and k̃y. In (g) and (h), the color changes from cyan to red when k̃y increases from 0 to 1.2kF. In (h), the
super-resonant regimes are marked by the dashed circles. Other parameters are EF ¼ vkF ¼ 50v=L and V0 ¼ 40EF. We provide more
illustrations for other values of V0 in the Supplemental Material [57].
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First, G has a period of π in θ. For small field strengths
B < Bc, GðθÞ displays approximately a sinusoidal depend-
ence, GðθÞ −G0 ∝ sin½2ðθ − θ0Þ�, where G0 is a (θ-inde-
pendent) constant and Bc corresponds to the field strength
at which the first conductance peak is located [74]. If the
tilting direction is parallel (m ¼ 0) or perpendicular (γ ¼ 0)
to the field direction, the phase shift becomes θ0 ¼ 0 or
π=2. However, if the tilting direction is neither parallel nor
perpendicular to the field direction (mγ ≠ 0), then θ0 is
different from 0 and π=2 [Fig. 4(b)]. Second, if we increase
the field strength B, the dependence on θ becomes more
pronounced [Fig. 4(a)]. This shows that the anisotropy of
surface states is enhanced by increasing B via the tilting
effect. Third, for stronger field strengths B > Bc, G
oscillates with a number of peaks and valleys in one period
θ ∈ ½0; πÞ (blue curve). These dense oscillations with
respect to θ can also be related to the super-resonant
transport of surface states analyzed before. It is interesting
to note that clear field-direction dependence in the resis-
tance of topological surface states has been observed
recently [44,52].
Conclusion and discussion.—We have identified a pos-

itive magnetoconductance of topological surface states,
which stems from the increase of the Fermi surface by
applying in-plane magnetic fields. We have unveiled the
super-resonant transport of the surface states by tuning the
magnetic field, which enables many propagating modes to
transmit a barrier potential without backscattering. This
super-resonant transport results in pronounced oscillations
in the magnetoconductance.
We note that the appearance of the positive magneto-

conductance and conductance oscillations can be directly
attributed to the deformation of the surface Dirac cone by
in-plane magnetic fields. In this work, the crucial role of
deforming is played by tilting the Dirac cone via the
Zeeman effect. Particularly, the anomalous conductance

oscillations arising from the super-resonant transport of
surface states are essentially different from conventional
magnetic oscillations, which typically stem from the
formation of Landau levels or the Aharonov-Bohm effect.
Our predictions can be implemented in various candidate

materials including HgTe and Bi2Se3 where in-plane
magnetic fields have been successfully applied to surface
states [27,44,52,75–78]. Consider HgTe with parameters
v¼256meV·nm, m¼108meV·nm2, γ¼−64meV·nm2,
g ¼ 20 [57], L ¼ 2 μm, and V0 ¼ 40 meV [79]. We
could observe magnetic oscillations for tilting tc >
v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V0L=½πvðnc þ 1=2Þ�p

≃ 0.017v and thus for mag-

netic fields B > 2tcv=ðgμB
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2 þ γ2

p
Þ ≃ 8.4 T. For

Bi2Se3 with v¼330meV·nm, m¼237meV·nm2, γ ¼ 0,
g ¼ 19.4, L ¼ 2 μm, and V0 ¼ 150 meV [57], we could
observe the oscillations for B > 8.6 T [84].
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