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In cellular vortical flows, namely arrays of counterrotating vortices, short but flexible filaments can show
simple random walks through their stretch-coil interactions with flow stagnation points. Here, we study the
dynamics of semirigid filaments long enough to broadly sample the vortical field. Using simulation, we
find a surprising variety of long-time transport behavior—random walks, ballistic transport, and trapping—
depending upon the filament’s relative length and effective flexibility. Moreover, we find that filaments
execute Lévy walks whose diffusion exponents generally decrease with increasing filament length, until
transitioning to Brownian walks. Lyapunov exponents likewise increase with length. Even completely rigid
filaments, whose dynamics is finite dimensional, show a surprising variety of transport states and chaos.
Fast filament dispersal is related to an underlying geometry of “conveyor belts.” Evidence for these various
transport states is found in experiments using arrays of counterrotating rollers, immersed in a fluid and
transporting a flexible ribbon.

DOI: 10.1103/PhysRevLett.127.074503

Flows at low-Reynolds number (Re) are typically lam-
inar and regular. However, chaotic or turbulent dynamics
can emerge, such as by flowing through complex geom-
etries [1], adding elastic polymers [2–4], and exploiting the
hydrodynamic interactions between suspended passive
particles in externally driven flows [5], or between active
motile ones [6,7]. The understanding of how random and
complex dynamics can emerge in simple flows at low Re is
important in numerous applications [8–15].
Time-independent cellular vortical flows are simple

flows with inherent characteristic scales and closed stream-
lines. They often arise as simplified models for flows in
nature [16–18] and have been realized in different experi-
ments [19–21]. Tracer particles in such flows simply follow
closed streamlines. When the particle size is negligible
compared with the characteristic flow scale, complex
dynamics, such as aggregation [22] and Lévy walks
[18,23,24], have been found for active particles. For passive
flexible filaments, which can show complex deformations
even in simple shear flow [25], complex dynamics arises
differently: driven by buckling instabilities near the flow
stagnation points, the filaments behave as Brownian
walkers across the array [21,26,27]. The recent literature
on filament dynamics is reviewed in Ref. [28].
For finite-extent filaments, transport is determined by

flows sampled nonlocally along the filament, in contrast
with small or compact particles. Complex and different
behaviors may be generated and controlled through the

coupling of flows and filaments at different length scales. In
this Letter, we use experiments and a comprehensive set of
numerical simulations to investigate the transport of rigid
and semirigid filaments when their length L is comparable
to the vortex sizeW in an idealized Stokesian cellular flow.
In this regime, the background vortices can be viewed as
“soft” scatters for the filaments and the dynamics shows
similarity to billiards systems [29–31]. We construct a
phase diagram that shows the rich variety of transport states
possible for filaments moving across this simple low-Re
flow. In particular, we find that as L=W increases, there
exists a transition through Lévy walks, of generally
decreasing diffusion exponents and increasing Lyapunov
exponents, to Brownian walks. Lévy walks have been
found in the dynamics of active elongated particles in
cellular flows when L=W ≪ 1, but arising there due to
particle motility [18]. Quite remarkably, even completely
rigid filaments, described by only center-of-mass (COM)
position and orientation, show these varieties of random
walks and chaotic motions.
Besides L and W, the dynamics of a flexible filament

depends also upon its elastohydrodynamic length le ∼
ðB=μU0Þ1=3 [32], where B is filament rigidity, μ is fluid
viscosity, and U0 is the characteristic flow velocity. The
interplay among the three length scales is captured by two
dimensionless control parameters: the relative length γ ¼
L=W and the effective flexibility η ∝ ðL=leÞ3. The filament
appears to be more “flexible” when η is larger.
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Motivating experiment.—We set up a cellular flow
structure by immersing a square 9-by-9 roller array into
a tank of pure glycerol (see Fig. 1 and details in
Supplemental Material [33]). The rollers are interconnected
and driven by a stepper motor. Through viscous coupling
each roller rotates the fluid around it, with nearest neighbor
rollers being counterrotating. Flexible ribbons, made from
audio tape, are transported in the cellular flow and stay right
beneath the fluid surface, resembling 2D motions. The
effective flexibility η ≈ 7.5–354. The Re ¼ ρU0W=μ ≈ 0.1
–1, where ρ is the density of glycerol. As shown in Fig. 1, a
few interesting patterns of the ribbon’s motion are identi-
fied. For moderate γ, despite occasional trappings, the
ribbons can reach the edge of the cellular flow through
undulating steps directed along diagonals or the �x or �y
directions [Figs. 1(a)–1(c)]. However, for larger γ, the
ribbons may meander around for a long time and make
many turns before getting to the edge [Fig. 1(d)]. When η is
sufficiently large, the ribbons are bent with large deforma-
tion and often trapped inside one of the fluid vortices.
Simulation and model.—As a model, we consider

slender, inextensible, and elastic filaments of radius R
and length L (with aspect ratio ϵ ¼ R=L ≪ 1) moving in a
Stokesian flow. Lengths are scaled on L, velocity on U0,
and time on L=U0. The stream function Φγ of the back-
ground flow U is given by

Φγ ¼ ðπγÞ−1 sinðπγxÞ sinðπγyÞ; ð1Þ

which has stagnation points at ðn;mÞγ−1 for n, m integers.
The unit periodic cell is composed of four counterrotating
vortices [Fig. 1(e)]. The filament centerline, denoted rðs; tÞ,
is parametrized by a signed arclength s ∈ ½−1=2; 1=2�.
From the leading-order slender body approximation [37],
the centerline velocity rt is governed by a local balance of
drag force with the filament force (per unit length) upon the
fluid,

ηðI − rsrs=2Þðrt − U½r�Þ ¼ −rssss þ ðTrsÞs; ð2Þ

where the effective flexibility η ¼ 8πμU0L3=cB with
c ¼ j lnðϵ2eÞj, and U½r� is the background flow along the
filament centerline. The tensor I − rsrs=2 captures the drag
anisotropy of the filament. The filament force is described
by Euler-Bernoulli elasticity: f ¼ rssss − ðTrsÞs, where
determination of the tension T enforces filament inexten-
sibility. Equation (2) is evolved numerically using a
second-order finite difference method and implicit time
stepping, while imposing zero-force and -torque boundary
conditions [33].
The case of a rigid straight filament is informative [33].

We take rðs; tÞ ¼ rcðtÞ þ sp̂ðtÞ, where rc is the COM
position and p̂ ¼ ðcos θc; sin θcÞ with θc the filament
orientation. Under zero-force and -torque conditions, the
equations of motion are purely kinematic:

_rc ¼ −∇⊥
rcH with H ¼

Z
1=2

−1=2
Φγ½rðs; tÞ�ds; ð3Þ

_θc ¼ 12H − 6fΦγ½rð1=2; tÞ� þΦγ½rð−1=2; tÞ�g; ð4Þ

where ∇⊥ ¼ ð−∂y; ∂xÞ. In the “point limit” γ ¼ 0, particle
transport [Eq. (3)] is Hamiltonian, local, and decoupled
from particle rotational dynamics. Increasing γ increases
the averaging (over particle length) of the background flow,
while also increasing the coupling of particle translation to
rotation. This increase in system dimension leads to loss of
integrability and allows for transport chaos. Equations (3)
and (4) are evolved using a fourth-order Runge-Kutta
scheme. Our simulations typically run for 2 × 104L=U0

to capture long-time dynamics.
Rigid filament simulations.—The filament COM trajec-

tories show strong dependence on γ and the initial con-
ditions. A common statistical measure of a complex
trajectory is its step-length distribution ϕðlÞ [38]. The
step-length l is the straight-line distance between succes-
sive turning points, which separate two steps along differ-
ent directions [see Fig. 1(f) and Supplemental Material in
Ref. [33] ]. For rigid filaments of different γ, Fig. 2(a)
shows the complement of the cumulative distribution,
CðlÞ ¼ 1 −

R
l
a ϕðlÞdl, for l in 400 trajectories with random

initial conditions. We fit several random walk models using
a maximum likelihood method [39,40]. At small γ, the best-
fit models are mostly power laws given by ϕðlÞ ∝ l−ð1þβÞ

FIG. 1. Experimental COM trajectories of flexible ribbons in a
9-by-9 cellular flow, as shown on the left. Circles indicate the
locations of the spinning rollers. (a) A strongly undulating step
along þy direction with η ≈ 25. (b) A meandering trajectory with
a long undulating diagonal step with η ≈ 85. (c) Diagonal step
with η ≈ 85. (d) Meandering trajectory with many turns with
η ≈ 118. (e) Snapshot from a numerical simulation with η ¼ 100
and γ ¼ 1, showing a flexible filament moving in the cellular
flow described by Eq. (1). Black arrows are the background
cellular flow, and cyan closed curves are the streamlines. (f) A
typical trajectory from simulation with γ ¼ 1 and η ¼ 0.5. The
red points are turning points separating two different steps.
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with 0 < β < 2, indicating Lévy walks [38]. The trajecto-
ries show clusters of short steps interspersed with long steps
[Fig. 2(c)]. At large γ, ϕðlÞ fits well to exponential
functions, and the filaments display Brownian walks
[Fig. 2(e)]. At intermediate values of γ, with the exception
of γ around 1.08–1.09, the best-fit models are mostly
Weierstrassian random walks (WRW), which have been
found in the studies of animal search strategies and random
walks in bacterial swarms [18,41–43]. The ϕðlÞ of the
WRW is given by a hierarchical sum of exponential
distributions with mean b−ðjþ1Þ weighted by q−ðjþ1Þ:
ϕðlÞ ∝ P

J
j¼0 q

−ðjþ1Þbjþ1 exp ð−bjþ1lÞ, which resembles a
power law when J → ∞ and degenerates into an expo-
nential distribution when J ¼ 0.
The above transition through Lévy walks to Brownian

walks is confirmed from the scaling exponent of mean
squared displacement (MSD) [44], hδ2ðτÞi ∼ τν [Fig. 2(b)].
In general, ν decreases as γ increases. The critical γ
separating the two transport behaviors is around 1.15. At
γ around 1.08–1.09 [Fig. 2(b) inset], nearly ballistic
trajectories are observed with ν ≈ 2. This is due to a
geometric match of the filament length to the flow
periodicity and is unstable under small perturbations of
the flow field [33]. As shown in Fig. 3(a), the transition is
accompanied by a growth in the Lyapunov exponent λ
[33,45,46]: Brownian walks are more chaotic than Lévy
walks. The phase space shows complex structures with
strong dependence on γ, and Lévy walks are related to
particle stickiness to regular islands [33]. A transition from
Lévy walks to Brownian walks has been found in the
transport of ions in optical lattice [47,48]. The presence of

Lévy walks is also known in Hamiltonian chaos, but the
transitions are typically abrupt [49–52].
Mechanism.—We attribute the emergence of chaos and

different random walks to the nonlocal geometrical aver-
aging of the background flow by the filament from its
broad extension across vortices. Considering rigid filament,
from Eq. (3), the COM velocity of the filament is vc ¼
ðuc; vcÞ ¼

R 1=2
−1=2U½rðsÞ�ds. We first compute the variance

ofU½rðsÞ�: VarðU½r�Þ ¼ hR ð1=2Þ
−ð1=2Þ fU½rðsÞ� − vcg2dsi, where

the average is taken with respect to rc over the entire unit
cell and θc over [0, 2π). With the increase of γ [Fig. 3(b),
left], VarðU½r�Þ becomes larger, i.e., the background flow
that the filament experienced on average becomes more
variable. We also compute the correlation function between
the unit velocity vectors of the filament’s two ends
(s ¼ 1=2;−1=2): Cv ¼ hv̂ð−1=2Þ · v̂ð1=2Þi, where the
average is along COM trajectories [Fig. 3(b), right].
When Cv is large, the filament is likely to be translated
along a flow but to be turned around whenCv is small. Both
VarðU½r�Þ (increasing with γ) and Cv (decreasing with γ)
show that long filaments with large γ can hardly travel long
unidirectional steps but rather turn around and take seem-
ingly random and diffusive motions. On the other extreme
at very small γ, filaments are too short to perceive any flows
outside the local circulation within which it resides, and
most of the filaments are trapped except those initially close
to the separatrices. Therefore, the only possible long-
distance travelers are those filaments of intermediate
lengths.

FIG. 2. From Lévy walks to Brownian walks for rigid fila-
ments. Blue, power law ϕðlÞ; red, WRWs; and green, exponential
ϕðlÞ. (a) CðlÞ for γ ¼ 0.7, 1.0, and 1.4, with best-fit distributions.
With more statistics, higher-order terms in WRWs are needed
[33]. (b) ν as a function of γ. Error bars represent uncertainties
due to initial conditions. Inset: ν versus γ for 1.075 ≤ γ ≤ 1.095.
(c)–(e) Typical trajectories corresponding to the three cases
shown in (a).

FIG. 3. (a) Lyapunov exponent λ as functions of γ for rigid
filament. The large error bars for Lévy walks are due to the
nonuniformity of the phase space. (b) VarðU½r�Þ (left) and Cv
(right) as a function of γ. (c)–(e) Maps of positive uc (red,
rightward motion) and negative uc (blue, leftward motion)
computed with θc ¼ 3π=4 (see text for details). Snapshots of
the motion of rigid filaments are also shown with the time
ordering labeled by numbers. Green thick lines trace the COM
trajectories.
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Indeed, we find some clues by mapping the spatial
distributions of x-component COM velocity ucðrc; θcÞ. In
Figs. 3(c)–3(e), the maps of uc were made with θc ¼ 3π=4,
but any other values of θc in the second and fourth
quadrants would result in similar maps but a slightly
smaller magnitude of uc. When γ ≪ 1 [Fig. 3(c)], areas
of positive uc values (red, rightward motion) and negative
uc values (blue, leftward motion) are isolated from each
other, and filament cannot travel across vortices. As γ
increases, the red and blue regions start to deform and
morph into many alternating “conveyor belts” flowing
toward opposite directions [Figs. 3(d) and 3(e)]. If θc lies
in the first and third quadrants, the conveyor belts will take
the other diagonals oriented π=2 from those in Figs. 3(d)
and 3(e). The filament can now move across vortices and
travel long steps. We see two competing effects at work as γ
further increases: longer filament promotes the formation of
conveyor belts, but at the same time it is more likely to turn
and change directions. The latter effect is demonstrated in
Fig. 3(e) as a long filament is captured first by an opposite
conveyor belt (label 4) and then turns (label 5) with its two
ends moving oppositely.
The patterns of filament dispersal at scales much larger

than W are significantly different for different random
walks. For those performing Lévy walks they are strikingly
anisotropic. Figure 4(a) shows that for γ ¼ 0.7, the prob-
ability density function (PDF) Pðx; tÞ of finding a filament
at position x at time t after starting off with random initial
conditions from the unit cell centered at the origin has a
4-pointed star-like structure with four branches extending
along the diagonals specified by ðd̂1; d̂2Þ. Such anisotropy
arises from the long unidirectional diagonal steps due to the
conveyor belts. In particular, a sharp peak exists at the far
front of each branch [Fig. 4(b)] reflecting the microscopic
geometry of the Lévy walks [53]: filaments can only move

along d̂1 or d̂2 at each step. The PDF along d̂1 is given by a
product of a 1D Lévy distribution and a prefactor that
accounts for the decrease in the spread of the PDF along
d̂2 [53],

Pðd1; tÞ ∝ ½1 − d1=ðctÞ�−1=βLσ
βðd1Þ; ð5Þ

where c is the average speed of the filaments and Lσ
β is a 1D

Lévy distribution with exponent β and scale parameter σ
(∝ t1=β). Equation (5) agrees well with the simulation result
[Fig. 4(d)]. As γ increases, undulating steps along�x or�y
directions become more frequent, and 8-pointed star-like
patterns are formed [Fig. 4(b)]. While almost unapparent,
these additional branches can be faintly discerned in
Fig. 4(a). Eventually in the Brownian-walk regime for
sufficient large γ, in sharp contrast to Lévy walks, the PDF
follows an isotropic 2D Gaussian distribution with its
variance scaling linearly with time t [Fig. 4(c)].
Flexible filament simulations.—By extensively survey-

ing the phase space of γ and η, for the first time, we
construct a phase diagram showing various transport states
[see Fig. 5(a) and Supplemental Material in Ref. [33] ].
Highly flexible filaments (η≳ 102) are deformed and
trapped inside vortices for all values of γ, as is also
observed in the experiments. For relatively rigid filaments
(η≲ 10), the transport states are determined by γ. The
boundary that separates Lévy walks (1 < ν < 2) and
Brownian walks (ν ≈ 1) is located around γ ¼ 1.15. At
intermediate η between 10–102, the filament first meanders
around for a short period before moving indefinitely along
diagonals or �x and �y directions. We call this type of
transport behavior a ballistic state with ν ≈ 2. Even within
the ballistic state, the filament dispersal patterns show
strong dependence on both γ and η, and filaments with

FIG. 4. Dispersal patterns of 106 rigid filaments. PDF Pðx; yÞ at
t ¼ 500 for (a) γ ¼ 0.7, (b) γ ¼ 0.96, and (c) γ ¼ 1.4. (d) PDF
along direction d̂1 shown in (a) at two different time instants for
γ ¼ 0.7. Solid lines are the fittings of the theoretical result given
by Eq. (5).

FIG. 5. (a) From simulation, the phase diagram of the transport
states constructed using MSD. Depending on the initial con-
ditions, ballistic states may coexist with trapping states (circles).
(b),(c) CðlÞ from 52 trajectories in experiments for two different
values of γ.
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different lengths and flexibility are dynamically sorted [33].
The dispersal rate of filaments is largest in the ballistic
state, followed by Lévy walks and then Brownian walks.
There is no long-range transport in the trapping state.
Experimental evidence.—We find evidence that shorter

ribbons perform Lévy walks while longer ribbons
perform Brownian walks in the experiments [33].
Figures 5(b) and 5(c) show two examples. For γ ¼ 1.26,
the best-fit model is the truncated power law (TPL) [54]
supporting a Lévy walk; for γ ¼ 1.5, the step-length
distribution better resembles a truncated exponential
(TE) model supporting a Brownian walk. The γ value that
separates the two states is estimated to be around 1.4, which
differs from the value found in the simulation. This
discrepancy is possibly caused by the presence of the
roller boundaries. Despite the subtle difference in CðlÞ due
to the limited size of the flow field in the experiments, the
trajectories for the two states are significantly different
from each other as depicted in Fig. 1: with more turns in the
trajectories, longer ribbons take a much longer time to
reach the edge of the flow field than shorter ribbons. Our
experiments on the effect of η are limited, but for large η,
the ribbon is typically bent around one of the rollers and
trapped for a long time.
Discussion.—Our experiments and simulations demon-

strate that this simple system of semirigid filaments moving
in Stokesian cellular vortical flows has a surprisingly rich
range of dispersal dynamics, including Lévy walks and
path chaos. For γ ≫ 1 our limited simulations show mostly
Brownian walks due to averaging over multiple vortices.
The emergence of cross-vortex motion and chaos in our
system does not require the flow itself to be time dependent
and chaotic as it does for tracer particles [17,55]. It arises
from the elongated body being able to broadly sample the
background vortical field, and the strong coupling of
rotational to translational dynamics afforded by that elon-
gation. The cross-streamline motion and escape from local
flows shown by the semirigid filaments have implications
for efficient fluid mixing at low Re by additives [8,56].
Similar to the billiards system [29,30], the anisotropic
dispersals of filaments in the Lévy-walk state and ballistic
state are also originated from long unidirectional steps
preprogrammed by the fundamental geometries of the
backgrounds. However, the dominant directions of motion
depend on the relative length γ and effective flexibility η of
filaments in our system but are fully specified by the
geometries of scatterers in the billiards. Most prominently,
various transport states can be achieved by tuning different
length scales, which also serves as the underlying mecha-
nism of gel electrophoresis [57]. Our results may
open up new possibilities for efficient dynamical sorting
of elongated particles and semiflexible biopolymers
[57–60].
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