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Dynamical radiation pressure effects in cavity optomechanical systems give rise to self-sustained
oscillations or ‘phonon lasing’ behavior, producing stable oscillators up to GHz frequencies in nanoscale
devices. Like in photonic lasers, phonon lasing normally occurs in a single mechanical mode. We show
here that mode-locked, multimode phonon lasing can be established in a multimode optomechanical
system through Floquet dynamics induced by a temporally modulated laser drive. We demonstrate this
concept in a suitably engineered silicon photonic nanocavity coupled to multiple GHz-frequency
mechanical modes. We find that the long-term frequency stability is significantly improved in the
multimode lasing state as a result of the mode locking. These results provide a path toward highly stable
ultracompact oscillators, pulsed phonon lasing, coherent waveform synthesis, and emergent many-mode
phenomena in oscillator arrays.
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Introduction.—Recent times have seen extraordinary
progress in exploiting radiation pressure control over
optical and mechanical degrees of freedom in optomechan-
ical cavities [1]. The combination of high mechanical
coherence and quantum-noise-limited optical control
allows the generation of quantum states of macroscopic
mechanical resonators [2,3] and quantum transducers [4].
The same advantages enable highly coherent self-
oscillations associated with parametric instability [5,6].
Above threshold, a blue-detuned optical drive induces
phonon lasing that can be used for timekeeping, microwave
oscillators, signal synthesis, and studying nonlinear
dynamics [7–11]. The narrow-band high-frequency optical
modulation that these oscillations induce connects the
microwave and optical domains coherently and offers
unchallenged compactness sought after in microwave
photonics [12].
If multiple mechanical modes are coupled to a cavity,

phonon lasing takes place for the single mode whose
threshold condition is satisfied first, whilst other modes
get damped [13]. This mechanism of mode competition or
gain suppression—which is important to the study of
optical lasers as well [14]—generally inhibits multimode
phonon lasing using a single optical mode [13]. In optical
lasers and parametric oscillators, temporal control tech-
niques such as synchronous pumping [15] circumvent
mode competition and establish mode locking [16,17]
between different lasing frequencies. Two mode-locked
tones have equal temporal phase fluctuations [16,17] which
has proven extremely powerful in optics; it is the essential

mechanism underlying frequency combs leading to spec-
tacular advances in metrology, frequency synthesis, and
numerous applications [18]. Simultaneous phononic self-
oscillation in multiple modes was reported in low-finesse
and strongly pumped narrow-band cavities, but without
mode locking [19,20]. A reliable route to mode-locked
phonon lasing would enable versatile optomechanical
signal synthesis, exploiting coherent wave superposition.
It would be especially valuable at high (GHz) frequencies
in chip-scale devices for optical or electronic microwave
waveform generation and information processing. The
mechanism is a defining requirement for studying phonon
frequency combs and solitons. Moreover, coherently con-
necting modes in the blue-detuned pumping regime,
characterized by gain and self-oscillation caused by par-
ticle-non-conserving interactions, has broad significance in
view of the emergent phenomena in non-Hermitian and
nonlinear multimode systems, including synchronization
[20–28], stability enhancement [29], dynamical topological
phases [30], and analog simulators [31].
In this Letter, we overcome the single-mode lasing

limitation with a Floquet approach in which the optical
drive is modulated in time and show that two mechanical
modes are locked via a third Floquet mode similarly to the
original mode-locking mechanism outlined in [14].
Recently, time-modulated radiation pressure was used to
couple mechanical modes of different frequencies and
enable mechanical state transfer [32], nonreciprocity
[33], synthetic gauge fields [34], and entanglement [35].
Establishing a Floquet theory for phonon lasing, we show
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that a laser drive modulated at the difference between two
mechanical frequencies can induce mode-locked coherent
oscillation of both modes. Our general theoretical treatment
highlights the capability to establish mode-locked phonon
lasing involving multiple modes. We observe the predicted
multimode lasing experimentally in a silicon optomechan-
ical crystal cavity supporting two GHz-frequency mechani-
cal modes. The long-term stability of the output microwave
tones is significantly improved, promising application for
highly stable, ultracompact oscillators in microwave
photonics.
Theoretical model.—We consider the collective dynam-

ics of a system consisting of N mechanical modes (labeled
by j) coupled to one optical mode, described by the
Hamiltonian

ĤS=ℏ ¼ ωopâ†âþ
XN
j¼1

½Ωjb̂
†
j b̂j − gjâ†âðb̂j þ b̂†jÞ�; ð1Þ

with â (b̂j) referring to the optical (mechanical) annihila-
tion operator, ωop (Ωj) referring to the corresponding
resonance frequencies, and gj referring to the vacuum
optomechanical coupling rates. The driving laser is mod-
eled by adding iℏ½EdriveðtÞâ† − E�

driveðtÞâ� to the
Hamiltonian, assuming EdriveðtÞ ¼ E0eiωLtT ðtÞ with T ðtÞ
implementing optical modulation. Appending bath degrees
of freedom and tracing them out [1] yield quantum
Langevin equations. These are separable into mean field
and fluctuation components [âðtÞeiωLtþiϕ0 ¼ αðtÞ þ âðtÞ
and b̂jðtÞ ¼ βjðtÞ þ b̂jðtÞ], with linearized fluctuation
dynamics

_̂a ¼ −
�
iΔþ κ

2

�
âþ i

XN
j¼1

gj½αRðb̂jÞ þ âRðβjÞ� þ
ffiffiffi
κ

p
âin;

_̂bj ¼ −
�
iΩj þ

Γj

2

�
b̂j þ igjðα�âþ αâ†Þ þ ffiffiffiffiffi

Γj

p
b̂j;in: ð2Þ

Here, the optical field is considered in a frame rotating at
the central laser frequency ωL and Δ ¼ ωop − ωL denotes
the laser detuning. We introduced the optical (mechanical)
decay rate κ (Γj), input noise operators âin (b̂j;in),
RðôÞ ¼ ôþ ô†, and RðzÞ ¼ zþ z�. For periodic modula-
tion T ðtÞ ¼ P

m T me−imΩmodt (m ∈ Z), the mean optical
field α inherits the periodicity and admits a Floquet ansatz.
We implement laser intensity modulation by
T 0 ¼ ½1 − iJ 0ðdÞ�=2, T �1 ¼ −J 1ðdÞ=2, where J m
denotes the mth Bessel function of the first kind and d
the modulation depth, to find αðtÞ ¼ P

n ᾱne
−inΩmodt where

the coefficients ᾱn have to be deduced numerically if
T �1 ≠ 0 (see Supplemental Material [36], which includes
[37], for more details). The dynamics of fluctuation
components â and b̂ turn into a periodic system that can
be treated with Floquet techniques [38,39]:

_̂að0Þ ¼ χ̃−1âð0Þ þ
X
n

XN
j¼1

igjᾱnRðb̂ðnÞj Þ þ ffiffiffi
κ

p
âð0Þin ;

_̂b
ðnÞ
j ¼ χ̌−1jn b̂

ðnÞ
j þ igj½ᾱ�−nâð0Þ þ ᾱnâ†ð0Þ� þ

ffiffiffiffiffi
Γj

p
b̂ðnÞj;in; ð3Þ

with the mechanical Floquet susceptibilities χ̌−1jn ¼
−½iðΩj − nΩmodÞ þ Γj=2� and the optical susceptibility
χ̃−1 ¼ −fi½Δ −

P
j gjjᾱ0j2Iðχ̌−1j0 Þ=jχ̌−1j0 j2� þ κ=2g where

we denote IðzÞ ¼ iðz� − zÞ. Using the input-output rela-
tions for the relevant contributions to the optical field

âoutðωÞ ¼ âð0Þin ðωÞ − ffiffiffi
κ

p
âð0ÞðωÞ with input noise obeying

hûðmÞ
in ðωÞŵ†ðpÞ

in ðω0Þi¼δðω−ω0Þδuwδmpðnu
thþ1Þ yields the

stationary power spectral density of the experimentally
accessible output field

SðωÞ ¼ S̃þ
X
n;j

κg2j jᾱnj2Γjn̄j

½ðω − Δ̄Þ2 þ κ
4
�½ðω −ΩjnÞ2 þ Γ2

j

4
�
; ð4Þ

consisting of a noise floor S̃ and multiple Lorentzian peaks
at Ωjn ¼ Ωj þ nΩmod, filtered by the cavity density of
states. This is of Lorentzian form, with effective detuning
Δ̄ ¼ ΔþP

j;n 2g
2
j jᾱnj2=Ωj, due to static radiation pressure

for Γj ≪ Ωj.
Stability analysis.—To evaluate the mechanical stability,

we eliminate the optical fluctuation operator âð0Þ in Eq. (3)
and analyze its effect on the Floquet modes of the
mechanical degrees of freedom which are coupled via

σðmÞ
jlp ðωÞ ¼

gjglᾱ�−mᾱp
iðΔ̄ − ωÞ þ κ

2

−
gjglᾱmᾱ�p

−iðΔ̄þ ωÞ þ κ
2

: ð5Þ

The stationary mechanical spectra without periodic drive
(m≡ p≡ 0) are the well-known Lorentzians [40,41]
Sb̂jðωÞ ¼ S̃b̂j þ Γjn̄j½ðΩ0

j − ωÞ2 þ Γ02
j=4�−1 with optical-

spring-corrected frequencies Ω0
j ¼ Ωj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I½σð0Þjj0ðΩjÞ�=4þ 1

q
and modified linewidths Γ0

j ¼ Γj þ R½σð0Þjj0ðΩjÞ�.
The latter allow one to assess the mechanical oscillators’

stability for blue-detuned driving (Δ̄ < 0): their decay
rates Γ0

j are composed of intrinsic dissipation Γj counter-

acted by the stimulated emission process σð0Þjj0ðΩjÞ (see
Supplemental Material [36]). In this stimulated process for
b̂j, a cavity photon with excess energy of (approximately)
ℏΩj and a stimulating phonon are converted into a
(approximately) resonant photon and two coherent pho-
nons of this mode. Its rate overcoming the decay rate Γj

indicates surpassing the threshold of self-sustained oscil-
lation (Γ0

j < 0).
In the presence of the periodic drive, additional processes

associated with σð0Þjl�1σ
ð�1Þ
jl0 ðΩjÞ for l ≠ j modify the decay

rates
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Γ00
j ¼ Γ0

j −
X
l≠j

R

�
σð0Þjl�1σ

ð�1Þ
jl0

iðΩl − Ωj ∓ ΩmodÞ þ Γl
2
þ σð�1Þ

jl�1

�
; ð6Þ

which can become prominent if in addition to the detuning
being resonant the modulation frequency is tuned
into resonance at (approximately, on the scale of the
mechanical linewidth) the difference of distinct mechanical
frequencies Ωmod ¼ jΩj −Ωlj for low modulation depths

[Iðσð�1Þ
jl�1Þ ≪ jΩj −Ωlj]. These additional contributions can

be interpreted as the stimulated emission of a cavity photon
and a phonon creating a coherent phonon in a different
mode (see Supplemental Material [36]). This process can
act as a seed of mode locking between the two mechanical
modes and cause a mode that exceeds the threshold
(Γ00

j < 0) to stimulate simultaneous lasing of the other
mode, circumventing the prohibitive effect of gain
saturation.
To verify the existence of a multimode phonon lasing

state, we conduct numerical simulations of the Itô stochas-
tic differential equation for the mean field dynamics
employing the Euler–Maruyama scheme [42] (see
Supplemental Material [36]) as depicted in Fig. 1. We
choose an instructive set of parameters for two mechanical
modes (N ¼ 2, Ω1 ¼ 5.3, Γ1=Ω1 ¼ 0.16, g1 ¼ 0.80,
Ω2 ¼ 7.1, Γ2=Ω2 ¼ 0.10, g2 ¼ 1.1) and the optical cavity
(Δ ¼ −6.1, κ ¼ 3). Driving this system with E0 ¼ 8.9,
leading to Δ̄ ≈ −Ω1, while modulating with depth d ¼ 0.08
for various modulation frequencies Ωmod reveals the effect
of intensity modulation when starting from a thermal state.
Figure 1(b) shows that for off-resonant modulation
(Ωmod ≪ Ω2 −Ω1) the mechanical modes stay in a thermal
state, as the system is just below the instability threshold for
the chosen power. For modulation closer to resonance, only
one of the modes (β1) transitions from thermal into self-
sustained oscillations, with a high amplitude and narrow
spectrum as expected for a lasing process [Fig. 1(c)]. This
happens because of the additional negative damping con-
tribution in Eq. (6). That extra modulation-induced process
involves the other mechanical mode (β2), as evidenced by
the fact that β2 is coherently driven at frequencies Ω̃1 and
Ω̃1 þ Ωmod, while it still does not show significant
narrowing [magenta spectrum in Fig. 1(c)]. This lack of
narrowing of the linewidth signifies that β2 is not lasing for
this particular off-resonant driving. This changes when the
modulation frequency is tuned into resonance at approx-
imately the difference of the mechanical frequencies
[Fig. 1(d)], and the multimode process gain, described
by Eq. (6), is maximized. Then, both mechanical modes
undergo coherent oscillation at distinct frequencies result-
ing in multimode oscillation (MMO) since both peaks in
the mechanical spectra are described by Lorentzians with
decreased linewidth and not by the sum of the thermal
Lorentzian and additional peaks, as in Fig. 1(c).

Experimental multimode phonon lasing.—To confirm
the predicted MMO state experimentally, we use the 1D
silicon optomechanical crystal cavity depicted in Fig. 2(a).
It supports a high-quality optical mode [Fig. 2(b)]
that allows phonon lasing under blue-detuned laser driving
[10]. Interestingly, this system hosts two GHz-frequency
mechanical modes within the beam’s phononic bandgap
labeled ‘P1’ and ‘P2,’ corresponding to oscillations of the
lateral corrugations [43]. Their displacement is depicted in
Fig. 2(c), simulated using the shape retrieved from
electron microscopy. Figure 2(d) shows both modes’
thermomechanical spectra transduced at low power. All
measurements were performed at room temperature and

FIG. 1. (Color online) Multimode phonon lasing in an opto-
mechanical cavity. (a) Two mechanical modes at distinct frequen-
cies are coupled to an optical cavity driven by an intensity-
modulated pump. (b) For small modulation frequency both
mechanical modes remain in a thermal state. (c) With the
modulation frequency approaching the difference frequency only
one mode (β1) transitions into SSO with the help of the multi-
mode gain mechanism, whereas the other mode remains in the
thermal state while being driven at Ω̃1 þΩmod. (d) When the
modulation frequency approximates the difference frequency,
both mechanical modes coherently oscillate, i.e., MMO occurs.
Insets show the power spectral densities of the mechanical (left)
and optical (right) modes.
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atmospheric pressure, coupling light to and from the cavity
with a dimpled fiber taper (see more details in the
Supplemental Material [36]). Notably, the coupling rate
and damping of both mechanical modes are quite similar,
yielding similar cooperativities Cj ¼ 4g2j n̄c=ðΓjκÞ, with n̄c
the intracavity photon number: C1=n̄c ¼ ð3.7� 0.3Þ ×
10−5 and C2=n̄c ¼ ð5.6� 0.4Þ × 10−5.
Because of this similarity, we observe that either mode

can be individually driven to a single-mode self-sustained
oscillation (SSO) state under blue-detuned driving, as
shown in Fig. 3(a). The choice of lasing state depends
on fine experimental conditions, including the initial
(random) thermal state of each mode. Figure 3(b) depicts
both modes’ intensities while the laser wavelength (input
power Pin ¼ 3.16 mW) is continuously increased toward
the SSO regime. We see that once one mechanical mode
(P2) starts lasing, the other mechanical mode (P1) is
damped, evidencing gain suppression [13]. We then modu-
late the laser intensity at frequency Ωmod (with d ¼ 0.18).
Starting from P2 in an SSO state and stepping the
modulation frequency across resonance Ωmod ¼ Ω2 −Ω1

does not activate the MMO state, as the thermomechanical
Lorentzian of P1 remains unaffected due to gain suppres-
sion [see Fig. 3(c) and Supplemental Material [36] ].
Instead, the MMO regime is reached when the intermodal
coupling is established already before the threshold is

reached, allowing the Floquet modes to cross the threshold
simultaneously, indicating hysteretic behavior (see
Supplemental Material [36]). We experimentally achieve
this by implementing the modulation fixed to the measured
difference frequency, and then tuning a far-blue-detuned
laser toward cavity resonance. The resulting MMO state is
shown in Fig. 3(d) (right): both modes are simultaneously
in the self-sustained regime at very different frequencies.
The left panel shows the beat note of the two lasing tones,
measured after mixing them and filtering out the modula-
tion atΩmod (see Supplemental Material [36]). Its extremely
narrow linewidth, much smaller than the linewidths of the
individual tones and only limited by the 1 Hz resolution
bandwidth of the spectrum analyzer, proves the mode
locking of the two lasing phonon modes: the beat note
phase evolves as the difference of the oscillator phases
Ω̃j þ ϕjðtÞ, with all fluctuations contained in ϕjðtÞ. Its
narrow spectrum proves ϕ2ðtÞ − ϕ1ðtÞ is constant, i.e., the
modes’ phase fluctuations are identical—they are mode
locked. We emphasize that without the modulated drive, the
modes cannot self-oscillate independently as required in
synchronization [44].

(b)

(a)

(c)

(d)

FIG. 2. (a) Scanning electron microscope image of the
fabricated optomechanical cavity. (b) Simulated electric field
pattern of the optical mode. The measured resonance wave-
length is λr ¼ ð1527.4� 0.2Þ nm with loaded decay rate
κ=2π ¼ ð14.88� 0.08Þ GHz. (c) Calculated mechanical dis-
placement profiles of P1 and P2. (d) Measured power spectral
density of the thermally transduced mechanical modes at
Ω1=2π ¼ 3.845 GHz and Ω2=2π ¼ 3.899 GHz.

(a)

(b) (c)

(d)

FIG. 3. From single-mode to multimode phonon lasing.
(a) Self-oscillation spectra of P1 (left) and P2 (right), without
external modulation. (b) P2 SSO excitation through a wavelength
scan with a blue-detuned laser Ωmod ≠ Ω2 − Ω1. (c) Mechanical
amplitude evolution in a modulation frequency scan around the
difference frequency when P2 is self-oscillating showing that
hysteretic effects prohibit the MMO state from being activated
from the SSO state. (d) Multimode lasing under an input
modulation Ωmod ¼ Ω2 − Ω1. Left: difference tone obtained by
mixing the lasing mechanical modes in the microwave domain,
proving mode locking. Right: spectrum of the two mechanical
modes when lasing simultaneously (MMO state).
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Phase noise and stability analysis.—To characterize the
linewidth and stability of the oscillators, we analyze their
phase noise LðfÞ in the SSO and MMO states in Figs. 4(a)
and 4(b). In both cases we observe the typical noise
contributions expected in optomechanical oscillators, i.e.,
white phase (1=f0), white frequency (random phase walk,
1=f2), and flicker frequency (1=f3) noise [10], in good
agreement with Leeson’s model [45]. A phase noise of
ð−65� 3Þ dBc=Hz at 10 kHz is measured for the SSO
state, on par with other optomechanical microwave oscil-
lators [10,11,46–48]. Although white phase and flicker
frequency noise are dominating, we estimate a Lorentzian
linewidth of maximally∼40 Hz from the fitted contribution
of the random phase walk.
Interestingly, the phase noise of the MMO state is

ð−70� 4Þ dBc=Hz at 10 kHz; thus, it is smaller than that
in the SSO regime for this and all smaller offset frequen-
cies. This reduction of fluctuations is also clear from the
time evolution of the spectra in the SSO (P2) and MMO
states, presented in Figs. 4(c) and 4(d). All traces presented
here correspond to mechanical modes in the lasing state,
excluding the thermally driven P1 mode [top panel of
Fig. 4(c)], which requires a different frequency span.
The observed jitter of the lasing frequency of P2 in
Fig. 4(c) could stem from thermal, optical power, and
fiber taper fluctuations influencing the optical spring effect,
as Eq. (5) implies. In the MMO lasing state [Fig. 4(d)],
we observe a significantly enhanced stability of both
lasing modes.

Figure 4(e) shows the Allan deviation σyðτÞ [49],
obtained from combining the phase noise measurements
in Figs. 4(a) and 4(b) and the spectral time traces for longer
acquisition times (up to 1 s). For low averaging times τ the
main differences between the Allan deviations stem from
the white phase noise background, which is related to
measurement sensitivity and signal amplitude. However,
for longer averaging times [purple shaded area in the
middle of Fig. 4(e)], where the dominant source of
fluctuations is flicker frequency noise (τ0), the MMO is
significantly more stable than the SSO state. This is in
agreement with the obtained root-mean-square jitter, which
reduces from 220� 5 ps in both SSO states to 76� 5 ps in
the MMO state (see Supplemental Material [36], which
includes Ref. [50], for more details). Also for high
averaging times with a frequency drift contribution [τ2,
yellow shaded area in the right part of Fig. 4(e)], the
multimode stability is superior. This improvement cannot
be ascribed to locking to the external modulation, as that is
far off resonant. Instead, it could be related to the MMO
regime being sustained at significantly reduced intracavity
power, as suggested by the relative heights in Fig. 3, thus
reducing the influence of optical fluctuations on the
optomechanical spring effect [51]. Here, the effective mass
is increased in the system once both mechanical modes are
in the lasing state, a feature that also occurs in synchronized
oscillators [29,52]. This effect could very well be in play
here, with an associated 3 dB reduction of phase noise
expected when the two oscillators are coupled. Future
studies should reveal the various contributions and the
application potential of the increased stability in the
Floquet lasing regime.
Conclusion.—Our investigation shows that nonlinear

dynamics of Floquet modes enable mode-locked multi-
mode phonon lasing in optomechanical systems. It can be
understood from higher-order cross-mode corrections to
the self-energy for modulated drive. We demonstrated this
prediction experimentally, revealing that it enhances long-
term oscillator stability. The demonstrated mechanism
generalizes to systems with many equally spaced (GHz)
modes [53] where it could be employed toward phononic
frequency combs, and can be used to study the rich
emergent physics of many-mode self-oscillating optome-
chanical systems, in a fully controllable fashion.

The authors thank Javier del Pino for useful discussions.
This work is supported by the European Union’s Horizon
2020 research and innovation program under Grant
Agreements No. 732894 (FET Proactive HOT), 713450
(FET-Open PHENOMEN), and 945915 (SIOMO), the
Spanish State Research Agency (PGC2018-094490-B-
C21) and by the Juilan Schwinger Foundation project
grant No. JSF-16-03-0000 (TOM). It is part of the research
program of the Netherlands Organisation for Scientific
Research (NWO). A. M. acknowledges funding from
Generalitat Valenciana under Grants No. PROMETEO/

(a) (b)

(c) (d)

(e)

FIG. 4. Phase noise and stability behavior. Phase noise of P1
(blue) and P2 (red) in the SSO (a) and MMO regimes (b). Time
evolution of the recorded spectra for the P1 (top) and P2 (bottom)
modes for SSO lasing in mode P2 (c), and for MMO lasing (d).
(e) Allan deviation for P1 and P2 in the SSO and MMO states.

PHYSICAL REVIEW LETTERS 127, 073601 (2021)

073601-5



2019/123, BEST/2020/178, and IDIFEDER/2018/033.
E. V. acknowledges support from the European Research
Council (ERC Starting Grant No. 759644-TOPP).

*These authors contributed equally to this work.
†verhagen@amolf.nl

[1] M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Rev.
Mod. Phys. 86, 1391 (2014).

[2] J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A.
Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter,
Nature (London) 478, 89 (2011).

[3] J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman,
K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and
R.W. Simmonds, Nature (London) 475, 359 (2011).

[4] C. A. Regal and K.W. Lehnert, J. Phys. Conf. Ser. 264,
012025 (2011).

[5] T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and
K. J. Vahala, Phys. Rev. Lett. 95, 033901 (2005).

[6] C. H. Metzger andM. K. Karrai, Nature (London) 432, 1002
(2004).

[7] F. Marquardt, J. G. E. Harris, and S. M. Girvin, Phys. Rev.
Lett. 96, 103901 (2006).

[8] M. Eichenfield, R. Kamacho, J. Chan, K. J. Vahala, and O.
Painter, Nature (London) 459, 550 (2009).

[9] D. Navarro-Urrios, J. Gomis-Bresco, S. El-Jallal, M.
Oudich, A. Pitanti, N. Capuj, A. Tredicucci, F. Alzina,
A. Griol, Y. Pennec, B. Djafari-Rouhani, A. Martinez, and
C. M. Sotomayor Torres, AIP Adv. 4, 124601 (2014).
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