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We present a consistent ab initio computation of the longitudinal response function RL in 40Ca using the
coupled-cluster and Lorentz integral transform methods starting from chiral nucleon-nucleon and three-
nucleon interactions. We validate our approach by comparing our results for RL in 4He and the Coulomb
sum rule in 40Ca against experimental data and other calculations. For RL in 40Ca we obtain a very good
agreement with experiment in the quasielastic peak up to intermediate momentum transfers, and we find
that final state interactions are essential for an accurate description of the data. This work presents a
milestone towards ab initio computations of neutrino-nucleus cross sections relevant for experimental long-
baseline neutrino programs.
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Understanding a wide variety of nuclear phenomena in
terms of constituent nucleons is a major ongoing initiative
in nuclear theory [1]. Theoretical predictions that start from
the forces among nucleons and their interactions with
external probes as described by chiral effective field theory
are arguably the doorway to connect experimental obser-
vations with the underlying fundamental theory of quantum
chromodynamics [2–5]. This approach is key to interpret
existing data, provide guidance for future experiments,
and support interdisciplinary efforts at the interface with
nuclear physics, such as neutrino physics [6].
Neutrino oscillation experiments aim at addressing some

of the biggest unanswered questions in physics by meas-
uring the charge conjugation-parity violating phase in the
lepton sector of the standard model of particle physics. For
the current neutrino oscillation experiments the systematic
errors are at the order of ∼10% and largely influenced by
considerable cross-section uncertainties. Next generation
experiments set their precision goal much higher. The
T2HK [7] and DUNE [8] experiments aim at achieving
much smaller statistical fluctuations, comparable with
present systematic errors. It is therefore crucial to control
the systematics, whose major part comes from the limited
precision of theoretical modeling of neutrino-nucleus cross
sections. Furthermore, the exposure needed to achieve a
desired sensitivity also depends on the ability of reducing
systematic errors. The models that are presently in use,
particularly the ones implemented in the Monte Carlo event
generators, should be benchmarked with the predictions
given by ab initio models of nuclear dynamics for relevant
nuclei such as 12C, 16O, and 40Ar.
Because of recent developments of accurate quantum

many-body methods with controlled approximations,

ever-increasing computing power, and advancements in
the description of nuclear interactions and electroweak
currents, we are now entering an era where the ab initio
description of lepton-nucleus scattering is becoming pos-
sible. The Green’s function Monte Carlo (GFMC) method
was used to calculate nuclear responses of 4He and 12C
[9,10], and was recently able to make direct comparisons
with the neutrino-nucleus experimental cross sections
[11,12]. Using the same dynamical ingredients, other
simplified methods are being developed to reduce the
computational load and address the quasielastic peak
[13]. In another set of studies, the lepton-nucleus scattering
cross sections of 4He, 16O, and 40Ar were obtained using
spectral functions calculated in the self-consistent Green’s
function method with final-state interactions included using
mean-field potentials [14,15].
In this Letter, we lay out the tools for an ab initiomethod

that accurately accounts for final state interactions, con-
sistently with the treatment of initial state interactions,
and demonstrate its advantages by comparing to available
longitudinal electron scattering data for 40Ca. We base our
approach on the coupled-cluster (CC) method [16–25],
which stands out as one of the most suitable and promising
methods for calculations involving medium-mass and
heavy nuclei due to the polynomial scaling of its computa-
tional cost with the mass number A. Initially applied to
closed-shell nuclei (see Ref. [25] for a review), it has since
been extended to accurately describe doubly open-shell
neighbors such as 40Ar [26,27], and more recently starting
from an axially deformed reference state entire isotope
chains [28,29]. Combining CC with the Lorentz integral
transform method [30,31], the LIT-CC approach extends
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the reach of this theory to processes involving excitation
of bound nuclear states to the continuum. Originally
applied to calculate low-energy nuclear dipole responses
[32,33], recently it was extended to compute the Coulomb
sum rule for 4He and 16O [34]. By devising a method to
project out the spurious center-of-mass (c.m.) excitations,
Ref. [34] has also tackled the major technical challenge of
removing c.m. contaminations in calculations utilizing
translationally noninvariant nuclear electroweak opera-
tors. These developments open the door to go beyond the
sum rule calculations and gain deeper insights into the
dynamics of the nucleus by computing the nuclear
response functions. With the goal of eventually applying
the theory to neutrino-nucleus scattering, where exper-
imental data are scarce or imprecise, we first benchmark
our results for inelastic electron scattering by comparing
them with existing data for 40Ca.
The inclusive cross section of this process can be

expressed in terms of two response functions: the longi-
tudinal, RLðω; qÞ, and the transverse, RTðω; qÞ, where ω is
the energy transferred from the electron to the nucleus.
These are induced by the charge and the current operator,
respectively, and can be experimentally disentangled using
the so-called Rosenbluth separation. We study the longi-
tudinal response in this work and defer the transverse
response, which receives large two-nucleon electromag-
netic current contributions [12], to a future work. Formally,
the longitudinal response function can be defined as

RLðω; qÞ ¼
XZ

f

jhΨfjρðqÞjΨ0ij2δ
�
Ef þ

q2

2M
− E0 − ω

�
;

ð1Þ
where M is the mass of the target nucleus, and jΨ0=fi and
E0=f, respectively, denote the initial or final-state nuclear
wave functions and energies, which we compute using
nucleon-nucleon and three-nucleon forces from chiral
effective field theory. In order to estimate the sensitivity
of our results on the employed Hamiltonian we use two
different chiral interactions, namely, NNLOsat [35] and
ΔNNLOGOð450Þ [36]. These interactions are both given at
next-to-next-to-leading order in the chiral expansion and
employ a regulator cutoff of 450 MeV=c, but they differ in
that ΔNNLOGOð450Þ includes intermediate states with
explicit Δ isobars in its construction while NNLOsat does
not. These interactions are well suited for our study of 4He
and 40Ca as they have been shown to provide an accurate
description of radii and binding energies of light and
medium-mass nuclei, and the saturation point of symmetric
nuclear matter [35,36].
The charge density operator considered in this work is

ρðqÞ ¼ e
2

XA

i¼1

½GS
EðQ2Þ þ τ3i G

V
EðQ2Þ� exp ðiq · riÞ; ð2Þ

where e is the proton charge, while ri and τ3i are the
coordinate and the third isospin component of nucleon i.
We use the parametrization of Ref. [37] for the nucleon
isoscalar-isovector electric form factors, GS=V

E ðQ2Þ. The
Darwin-Foldy and the spin-orbit relativistic corrections, as
well as the two-nucleon current contributions, are not
included in Eq. (2) since we strive for consistency between
the power-counting and truncation in the chiral expansions
of the current and the interactions. Specifically, corrections
to Eq. (2) are at least 4 orders higher in the chiral expansion
when the inverse of the nucleon mass is counted as two
chiral orders [38], which is beyond the order at which the
interactions we use are truncated.
The sum over Ψf in Eq. (1) poses a serious computa-

tional challenge, since it involves an integration over the
continuum states, when ω is above the particle emission
threshold ωth. To overcome this issue, we use the LIT
method, where through the application of a Lorentzian-
kernel transform,

LLðσ; qÞ ¼
σI
π

Z
dω

RLðω; qÞ
ðω − σRÞ2 þ σ2I

¼ hΨ̃ρ
σ;qjΨ̃ρ

σ;qi; ð3Þ

with σI ≠ 0, one reduces the problem to solving

ðH − E0 − σÞjΨ̃ρ
σ;qi ¼ ρðqÞjΨ0i; ð4Þ

whereH denotes the nuclear Hamiltonian. Effectively, Ψ̃ρ
σ;q

is the solution of a bound-state “Schrödinger-like” equation
with a source term, which can be solved also in coupled-
cluster theory.
The CC method allows for the inclusion of many-body

correlations as a controlled expansion by writing the
nuclear wave function as jΨi ¼ eT jΦ0i. Here jΦ0i is a
suitably chosen reference state, and T ¼ T1 þ T2 þ � � � is a
linear expansion in particle-hole excitations typically trun-
cated at some low excitation rank. In this work we truncate
T ¼ T1 þ T2 which is known as the coupled-cluster singles
and doubles (CCSD) method. Inserting the CCSD wave
function into the many-body Schrödinger equation and
projecting from the left with e−T , it is seen that the
reference state jΦ0i is the ground state of the similarity
transformed normal-ordered Hamiltonian H̄N ¼ e−THNeT .
In the LIT-CC formulation one has to employ the equation-
of-motion coupled-cluster technique (EOM-CC) [39]
with a source term [see right-hand side of Eq. (4)] and
the similarity transformed normal-ordered operator
Θ̄N ≡ e−TΘNeT [40]. Here, Θ are the rank-J multipoles
of the electromagnetic charge operator given by Eq. (2). To
obtain the LIT, we perform EOM-CC calculations for each
multipole ½ρðqÞ�J, and perform the sum over all multipoles
at the end (see also Ref. [41]).
The response function RLðω; qÞ for a given value of q is

then obtained by inverting the integral transform from
Eq. (3). To perform the inversions, which require the
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solution of an ill-posed problem, we perform the expansion
RLðωÞ ¼

P
N
i ciωn0e−ðω=βiÞ and seek for stable solutions by

varying the non-linear parameter β (as well as n0) in a
certain range. The inversion procedure involves the deter-
mination of the coefficients ci of the N basis functions by a
least-squares fit [31]. We impose RðωÞ to be zero for
ω ≤ ωth, using the values we obtain for a given nuclear
Hamiltonian in the CCSD approximation. We estimate the
uncertainty associated with the inversion procedure by
inverting LITs with three different values of σI ¼ 5, 10, and
20 MeV and by varying N from 6 to 9.
In all our results we employ a model space consisting of

15 major oscillator shells (emax ¼ 2nþ l ¼ 14) with an
additional cut on the matrix elements of the three-nucleon
force given by e3max¼2n1þ l1þ2n2þ l2þ2n3þ l3≤16.
We checked that we can reach a satisfactory convergence of
LL in terms of the single-particle model space size emax.
The latter can be tested, e.g., by studying the residual
dependence on the underlying harmonic oscillator fre-
quency ℏΩ. In particular, for LITs with σ ¼ 20 MeV we
estimate the convergence in the quasielastic peak to be at
the 2% level for q ≤ 350 MeV=c and of 4% for
q ≥ 400 MeV=c, by varying ℏΩ in the range 18 to 22 MeV.
Benchmark on the 4He nucleus.—We begin by presenting

our results for RL in the case of 4He at q ¼ 300 MeV=c. In
Fig. 1, we show calculations performed with the NNLOsat
interaction in the CCSD scheme for an underlying har-
monic oscillator frequency of ℏΩ ¼ 16 MeV. Here the
small band reflects only the uncertainty associated with the
LIT inversion. For comparison, we also show calculations
performed with the hyperspherical harmonics method (HH)
[42] using the AV18þ UIX potential and Green’s function
Monte Carlo (GFMC) [43] calculations that used the
AV18þ IL7 potential. We obtain very good agreement
with the experimental data as well as with other theoretical
calculations. This comparison corroborates our method and
further validates the protocol we developed in Ref. [34] to
remove center of mass contamination.
Benchmark on the 40Ca nucleus.—Following the same

steps as in Ref. [34], we calculate the Coulomb sum rule for

40Ca using the NNLOsat interaction. The c.m. contamination,
which is expected to scale with inverse powers of the nuclear
mass, is indeed found to be negligible for 40Ca at
q > 200 MeV=c, and is overall much smaller than in the
previously considered cases of 4He and 16O [34]. In Fig. 2 we
compare it to the cluster variational Monte Carlo (CVMC)
results from Ref. [46] which used the AV18þ UIX potential
and included Darwin-Foldy and spin-orbit corrections.
Results are compatible at low-q due to the larger uncertainty
in the CVMC curve, and show the same increasing trend for
q > 100 MeV=c with small differences. We have verified
that the difference at q ¼ 500 MeV=c is mainly due to
relativistic effects which we omitted in order to be consistent
with the chiral order we work at. Most importantly, both
theoretical predictions are in agreement with experimental
data [47] in the range between 300 and 375 MeV=c and are
higher than the data above q ¼ 400 MeV=c, likely because
experimental data are obtained by integrating RL up to a
finite ω, and not up to infinity as is done in the theoretical
calculations. We consider this a successful benchmark of our
method and point out that only a mild Hamiltonian depend-
ence is observed.
The 40Ca longitudinal response function.—We now turn

to our ab initio calculation of RL in 40Ca where the full final
state interaction is considered. We choose 40Ca because we
can compare our calculations with existing data, and it is
also a stepping stone for coupled-cluster computations
of neutrino scattering on 40Ar. For both NNLOsat and
ΔNNLOGOð450Þ we perform computations of RL at the
momentum transfers q ¼ 200, 300, 350, and 400 MeV=c.
In CCSD, the obtained ground-state energies E0 (proton
separation energies ωth) are −300.1 (6.32) and −322.12
(6.12) MeV for the NNLOsat and the ΔNNLOGOð450Þ
potential, respectively.
First, we find two bound excited Jπ ¼ 3−, 5− states

lying, respectively, at 4.5 (3.8) and 4.7 (4.0) MeV with the
NNLOsat½ΔNNLOGOð450Þ�] interactions, which are in
reasonable agreement with experimental data at 3.7
(Jπ ¼ 3−) and at 4.5 MeV (Jπ ¼ 5−). We plot their

FIG. 1. Longitudinal response function for 4He at
q ¼ 300 MeV=c. HH results taken from Ref. [44], GFMC results
from Ref. [43], and experimental data from Ref. [45].

FIG. 2. 40Ca results for Coulomb sum rule for NNLOsat and
ℏω ¼ 22 MeV compared with CVMC results of Ref. [46] and
experimental data taken from Ref. [47].
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strengths as a line in Fig. 3, and we observe that it decreases
with q. Second, for the continuum response we show a
band that reflects the uncertainty associated with the LIT
inversion and the model space, as we vary the harmonic
oscillator frequency ℏΩ from 18 to 20 and 22 MeV. As can
be seen in Fig. 3, for each momentum transfer we observe a
mild dependence on the interaction, the latter being
stronger at q ¼ 200 MeV=c. Comparing to the available
experimental data from Ref. [47], we find a generally very
good agreement, which is best for q ¼ 300 MeV=c. At
q ¼ 400 MeV=c, we see a quenching of the quasielastic
peak and an enhancement in the tail with respect to
experiment. We speculate that this could potentially be
explained by relativistic boost effects [43] or by the fact
that, especially at high q and high ω, we are reaching the
limits of applicability of chiral effective field theory set by
the regulator cutoff 450 MeV=c.
Finally, to quantify the effect of the final state interaction,

we will contrast the LIT-CC results with those of the simple
plane wave impulse approximation (PWIA). The point-
proton longitudinal response function is obtained in PWIA
assuming one outgoing free proton with mass m and a
spectator (A-1)-system with mass Ms,

RPWIA
L ðω; qÞ ¼

Z
dpnðpÞδ

�
ω −

ðpþ qÞ2
2m

−
p2

2Ms
− ωth

�
;

ð5Þ

and then augmented with nucleon electric form factors.
Here nðpÞ represents the proton momentum distribution
calculated from coupled-cluster theory using the NNLOsat
interaction, where c.m. corrections are found to be negli-
gible [48]. Unlike the LIT-CC results, the PWIA curves
shown in Fig. 3 are in poor agreement with the data: (i) they
miss the quasielastic peak position by up to 20 MeV,
(ii) they overestimate considerably the quasielastic peak
size by up to 40% and (iii) and they do not fully account for
the asymmetric shape of the response. The differences
between the LIT-CC and the PWIA results are very strong
at lower ω, where we observe that even for the highest
momentum transfers here considered q ¼ 400 MeV=c, we
describe the experimental data very well. This highlights
the importance of consistently including the final state
interaction.
In order to provide a prediction for future measurements

as opposed to a sole postdiction of existing data, we have
calculated also the q ¼ 200 MeV=c kinematics, where no
data exist yet. While this low-q range may be less important
for neutrino physics, this is where we have the largest
uncertainty band (range of low-q and low-ω). New precise
data could provide important tests of the ab initio nuclear
structure theory. An experimental program in this direction
is presently under development in Mainz [49].
Conclusions.—We performed an ab initio calculation of

the longitudinal response function of 40Ca and obtained very
good agreement with existing data. Our results are a proof of
principle that the LIT-CC method is suitable to deliver

(a) (b)

(c) (d)

FIG. 3. Longitudinal response of 40Ca for q ¼ 300, 350, 400 MeV=c for NNLOsat and ΔNNLOGOð450Þ potentials. For q ¼
200 MeV=c the strength of excited states was scaled by factor of 1=2 for better visibility. Experimental data taken from Ref. [47].
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responses for lepton-nucleus scattering at the momentum
transfers relevant for neutrino oscillation experiments.
Consequently, we extended the reach of consistent ab initio
calculations of electromagnetic responses at intermediate
momentum transfers into a region of medium-mass nuclei,
which until now was limited to systems with A ≤ 12.
Our framework allows for quantification of uncertainties

stemming from truncations of model space, chiral effective-
field-theory, and coupled-cluster expansions. In this work,
we estimated errors that arise from the inversion procedure,
and studied the dependencies on the model space and the
nuclear Hamiltonian. Our quantified uncertainties does not
yet include effects of missing higher-order excitations in
the coupled-cluster expansion or terms in the chiral
effective field theory interactions and currents. A thorough
analysis of all theory uncertainties entering lepton-nucleus
cross sections is part of our future plans. Finally, we also
plan to extend our coupled-cluster calculations to the
relativistic regime through the formalism of nucleon
spectral functions.
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