
Dibaryon with Highest Charm Number near Unitarity from Lattice QCD

Yan Lyu,1,2,† Hui Tong ,1,3,* Takuya Sugiura,3 Sinya Aoki,4,2 Takumi Doi,2,3

Tetsuo Hatsuda,3 Jie Meng ,1,5 and Takaya Miyamoto2
1State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China

2Quantum Hadron Physics Laboratory, RIKEN Nishina Center, Wako 351-0198, Japan
3Interdisciplinary Theoretical and Mathematical Sciences Program (iTHEMS), RIKEN, Wako 351-0198, Japan

4Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan
5Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan

(Received 16 February 2021; revised 30 April 2021; accepted 2 July 2021; published 11 August 2021)

A pair of triply charmed baryons,ΩcccΩccc, is studied as an ideal dibaryon system by (2þ 1)-flavor lattice
QCDwith nearly physical light-quarkmasses and the relativistic heavy-quark actionwith the physical charm
quark mass. The spatial baryon-baryon correlation is related to their scattering parameters on the basis of the
HAL QCD method. The ΩcccΩccc in the 1S0 channel, taking into account the Coulomb repulsion with the
charge form factor ofΩccc, leads to the scattering length aC0 ≃ −19 fm and the effective range rCeff ≃ 0.45 fm.
The ratio rCeff=a

C
0 ≃ −0.024, whose magnitude is considerably smaller than that of the dineutron (−0.149),

indicates that ΩcccΩccc is located in the unitary regime.

DOI: 10.1103/PhysRevLett.127.072003

Introduction.—Quantum chromodynamics (QCD) is a
fundamental theory of strong interaction and governs not
only the interaction among quarks and gluons but also the
interaction between color-neutral hadrons. In particular, the
nucleon-nucleon (NN) interaction, which shows a charac-
teristic midrange attraction and a short-range repulsion, and
the baryon-baryon (BB) interactions are important for
describing the nuclear structure and dense matter relevant
to nuclear physics and astrophysics [1–5].
Although the deuteron is the only stable bound state

composed of two nucleons, there are possible bound or
resonant dibaryons with and without strange quarks [6–8].
Among others, pΩðuudsssÞ [9] and ΩΩðssssssÞ [10],
which were predicted by lattice QCD (LQCD) simulations
near the physical point [11], stimulate experimental
searches in high energy hadron-hadron and heavy-ion
collisions [8,12–14].
As originally pointed out by Bjorken [15], the triply

charmed baryon (the charm number C ¼ 3) Ωccc is stable
against the strong interaction and provides an ideal ground
to study the perturbative and nonperturbative aspects of
QCD in the baryonic sector. Although it has not been
observed yet experimentally [16], there have been numer-
ous LQCD studies on its mass and electromagnetic form
factor (see [19] and references therein). Accordingly, it is
timely to study the ΩcccΩccc as the simplest possible

system to study heavy-baryon interactions. The recent
phenomenological study of ΩcccΩccc using the constituent
quark model can be found in Ref. [20].
In this Letter, we present our study of a system with the

charm number C ¼ 6, ΩcccΩccc in the 1S0 channel, for the
first time from a first principle LQCD approach [21]. The
reason we consider the S wave and total spin s ¼ 0 system
is that the Pauli exclusion between charm quarks at short
distances does not operate in this channel, so that the
maximum attraction is expected in comparison to other
channels. It is of critical importance to examine the
scattering parameters such as the scattering length and
the effective range to unravel the properties of such heavy
dibaryons near threshold. The HAL QCD method
[11,24,25], which treats the spatial correlation between
two baryons on the lattice, provides a powerful tool for
such analysis. Indeed, we show below that Ωþþ

cccΩþþ
cccð1S0Þ

with strong interaction and Coulomb repulsion is located
near unitarity [26,27] just above the threshold with a large
negative scattering length.
HAL QCD method.—The crucial steps in the HAL QCD

method [11,24,25] are to obtain the equal-time Nambu-
Bethe-Salpeter wave function ψðrÞ, whose asymptotic
behavior at a large distance reproduces the phase shifts,
along with the corresponding two-baryon irreducible kernel
Uðr; r0Þ. Since the same kernel Uðr; r0Þ governs all the
elastic scattering states, separating the ground state and the
excited states on the lattice, which is exponentially difficult
for baryon-baryon interactions [28,29], is not required to
calculate the physical observables [25]. The normalized
four-point function (the R correlator) related to the Nambu-
Bethe-Salpeter wave function is defined as
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Rðr; t > 0Þ ¼ h0jΩcccðr; tÞΩcccð0; tÞ ‾J ð0Þj0i=e−2mΩccc t

¼
X

n

AnψnðrÞe−ðΔWnÞt þO(e−ðΔE�Þt); ð1Þ

where ΔWn ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

Ωccc
þ k2n

q
− 2mΩccc

with the baryon

mass mΩccc
and the relative momentum kn. O(e−ðΔE�Þt)

denotes the contributions from the inelastic scattering
states, with ΔE� being the inelastic threshold, which are
exponentially suppressed when t ≫ ðΔE�Þ−1 ∼ Λ−1

QCD with
ΛQCD ∼ 300 MeV. ‾J ð0Þ is a source operator that creates
two-baryon states with the charm number C ¼ 6 at
Euclidean time t ¼ 0 and An ¼ hnj ‾J ð0Þj0i, with jni
representing the QCD eigenstates in a finite volume with
ΔWn < ΔE�. In this study, we take a local interpolating
operator, ΩcccðxÞ≡ ϵlmn½cTl ðxÞCγkcmðxÞ�cnðxÞ, where l, m,
and n stand for color indices, γk is the Dirac matrix, and
C≡ γ4γ2 is the charge conjugation matrix.
When contributions from the inelastic scattering states

are negligible [t ≫ ðΔE�Þ−1], the R correlator satisfies [25]

�
1

4mΩccc

∂2

∂t2 −
∂
∂t −H0

�
Rðr; tÞ ¼

Z
dr0Uðr; r0ÞRðr0; tÞ;

ð2Þ

where H0 ¼ −∇2=mΩccc
. By using the derivative

expansion at low energies, Uðr; r0Þ ¼ VðrÞδðr − r0ÞþP
n¼1 V2nðrÞ∇2nδðr − r0Þ, the central potential VðrÞ in

the leading order is given as

VðrÞ ¼ R−1ðr; tÞ
�

1

4mΩccc

∂2

∂t2 −
∂
∂t −H0

�
Rðr; tÞ: ð3Þ

The spatial and temporal derivatives of Rðr; tÞ on
the lattice are calculated in central difference scheme by
using the nearest neighbor points. To extract the
total spin s ¼ 0, the following interpolating operator
for the ΩcccΩccc system is adopted: ½ΩcccΩccc�0 ¼
1
2
ðΩ3=2

cccΩ−3=2
ccc − Ω1=2

cccΩ−1=2
ccc þ Ω−1=2

ccc Ω1=2
ccc − Ω−3=2

ccc Ω3=2
cccÞ.

Here, the spin and its z component of the interpolating
operator Ωsz

ccc are 3=2 and sz ¼ �3=2;�1=2, respectively,
and Ωsz

ccc is constructed by spin projection as shown in
Ref. [30]. To obtain the orbital angular momentum L ¼ 0
on the lattice, the projection to A1 representation of
the cubic group SOð3;ZÞ is employed: PA1Rðr; tÞ ¼
ð1=24ÞPRi∈SOð3;ZÞ RðRi½r�; tÞ. Note that VðrÞ in Eq. (3)

contains a channel coupling effect such as 1S0-5D0 mixing
and should be considered as an “effective” potential
projected onto the S-wave state [31].
Lattice setup.—(2þ 1)-flavor gauge configurations are

generated on the L4 ¼ 964 lattice with the Iwasaki
gauge action at β ¼ 1.82 and nonperturbatively
OðaÞ-improved Wilson quark action combined with stout

smearing at nearly physical quark masses (mπ≃
146 MeV and mK ≃ 525 MeV) [32]. The lattice cutoff is
a−1 ≃ 2.333 GeV (a ≃ 0.0846 fm), corresponding to
La ≃ 8.1 fm, which is sufficiently large to accommodate
two heavy baryons. For the charm quark, we employ the
relativistic heavy quark (RHQ) action in order to remove
the leading order and the next-to-leading order cutoff errors
associated with the charm quark mass [33]. We use two sets
(set 1 and set 2) of RHQ parameters determined in Ref. [34]
so as to interpolate the physical charm quark mass and
reproduce the dispersion relation for the spin-averaged 1S
charmonium, i.e., a weighted average of the spin-singlet
state ηc and the spin-triplet state J=Ψ.
For the source operator ‾J ð0Þ, we use the wall type with

the Coulomb gauge fixing. We employ the periodic
(Drichlet) boundary condition for spatial (temporal) direc-
tion. We use 112 gauge configurations, which are picked up
1 per 10 trajectories. In order to reduce statistical fluctua-
tions, forward and backward propagations are averaged,
and four time measurements are performed by shifting the
source position along the temporal direction for each
configuration. Then, the total measurements amount to
896 for each set. The statistical errors are estimated by the
jackknife method with a bin size of 14 configurations. A
comparison with a bin size of 7 configurations shows that
the bin size dependence is small. The quark propagators are
calculated by the Bridgeþþ code [35], and the unified
contraction algorithm is used to obtain the correlation
functions [36].
Masses for spin-averaged 1S charmonium

[ðmηc þ 3mJ=ΨÞ=4] and Ωccc baryon (mΩccc
) calculated in

set 1 and set 2 by using the single exponential
fitting from the interval t=a ¼ 25–35 are listed in
Table I, together with the values from linear interpola-
tion (0.3786 × set 1þ 0.6214 × set 2) as well as the exper-
imental value. Our result for mΩccc

is consistent with
4789(6)(21) MeV obtained from (2þ 1)-flavor configura-
tions generated by PACS-CS Collaboration [37]. We have
checked that our results for hadron masses are unchanged
within errors by the fitting interval t=a ¼ 30 − 35.
Numerical results.—The ΩcccΩccc potential VðrÞ in the

1S0 channel from the interpolation between set 1 and set 2 is

TABLE I. Spin-averaged 1S charmonium mass
[ðmηc þ 3mJ=ΨÞ=4] and the Ωccc mass (mΩccc

) calculated in set
1 and set 2 with the statistical errors. The third row shows the
interpolated values obtained from set 1 and set 2. The exper-
imental value of ðmηc þ 3mJ=ΨÞ=4 is shown in the last row.

ðmηc þ 3mJ=ΨÞ=4 [MeV] mΩccc
[MeV]

Set 1 3096.6(0.3) 4837.3(0.7)
Set 2 3051.4(0.3) 4770.2(0.7)
Interpolation 3068.5(0.3) 4795.6(0.7)
Experimental 3068.5(0.1) � � �
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shown in Fig. 1 for t=a ¼ 25, 26, and 27 [see the
Supplemental Material [38] for the t dependence of VðrÞ
in a wide range of t]. Since the potentials from set 1 and set
2 are found to be consistent within statistical errors, the
uncertainty in the interpolation is negligible. Our choice
t=a ¼ 26 corresponds to t ≃ 2.2 fm; this is large enough in
comparison to the typical length scale Λ−1

QCD ∼ 0.7 fm
characterizing the inelastic states and is small enough to
avoid large statistical errors. We find that the potentials for
t=a ¼ 25, 26, and 27 are consistent with each other within
statistical errors. This indicates that systematic errors due to
inelastic states and higher order terms of the derivative
expansion do not largely exceed the size of statistical errors
[25], as we show below.
We find that the potential VðrÞ is repulsive at short range

and attractive at midrange, which has the same qualitative
behaviors with the NN potential [39] and the ΩΩ potential
[10]. The magnitude of the potential in the repulsive
region r < 0.25 fm [corresponding to dVðrÞ=dr < 0] for
ΩcccΩccc is an order of magnitude smaller than that
of ΩΩ obtained by the same method [10]. This
may be qualitatively explained by the phenomenological
quark model [40] as the color-magnetic interaction
between constituent quarks is proportional to the square
of the reciprocal constituent quark mass. Qualitatively,

Vcc
cm=Vss

cm ¼ ðm�
s=m�

cÞ2 ∼ ð500=1500Þ2 ∼ 0.1, where Vff0
cm is

the color-magnetic interaction between the quarks with
flavor f and f0, with m�

f being the constituent quark mass.
On the other hand, the attraction in the region r > 0.25 fm
[corresponding to dVðrÞ=dr > 0] may originate from the
exchange of charmed mesons or rather be attributed to the
direct exchange of charm quarks and/or multiple gluons. As
can be seen in Fig. 1, the range of the potential is much
smaller than the size of the lattice volume, indicating that
the finite volume artifact is negligible.

In order to convert the potential to physical
observables such as the scattering phase shifts and
binding energy, we perform the uncorrelated fit for
VðrÞ in Fig. 1 in the range r ≤ 2.5 fm by three-
range Gaussians, VfitðrÞ ¼

P
i¼1;2;3 αi expð−βir2Þ. Fitting

parameters with t=a ¼ 26, for example, are ðα1; α2; α3Þ ¼
(239.5ð3.0Þ;−62.7ð50.8Þ;−98.8ð50.3Þ) in MeV and
ðβ1; β2; β3Þ ¼ (48.5ð1.4Þ; 7.8ð2.6Þ; 3.4ð0.8Þ) in fm−2 with
an accuracy of χ2=d:o:f: ∼ 1.05.
In Fig. 2, we show theΩcccΩccc scattering phase shifts δ0

in the 1S0 channel calculated by solving the Schrödinger
equation with the potential VðrÞ at t=a ¼ 25, 26,
and 27. The relativistic kinetic energy is defined as

ECM ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

Ωccc

q
− 2mΩccc

, with a momentum k in

the center of mass frame. The error bands reflect the
statistical uncertainty of VðrÞ. In all three cases, the phase
shifts start from 180° at ECM ¼ 0, which indicates the
existence of a bound state in ΩcccΩccc system without
Coulomb repulsion.
The low-energy scattering parameters are extracted by

using the effective range expansion up to the next-to-
leading order, k cot δ0 ¼ −1=a0 þ 1

2
reffk2 þOðk4Þ, where

a0 and reff are the scattering length and the effective range,
respectively. The results are

a0 ¼ 1.57ð0.08Þðþ0.12
−0.04Þ fm;

reff ¼ 0.57ð0.02Þðþ0.01
−0.00Þ fm: ð4Þ

The central values and the statistical errors in the first
parentheses are obtained at t=a ¼ 26, while the systematic
errors in the last parentheses are estimated from the values
at t=a ¼ 25, 26, and 27, which originates from the inelastic
states and the higher order terms of the derivative
expansion.

FIG. 1. The ΩcccΩccc potential VðrÞ in the 1S0 channel as a
function of separation r at Euclidean time t=a ¼ 25 (red square),
26 (blue diamond), and 27 (green circle).

FIG. 2. The ΩcccΩccc scattering phase shifts δ0 in the 1S0
channel obtained from the potential VðrÞ at t=a ¼ 25, 26, and 27
as a function of the center of mass kinetic energy ECM.
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The binding energy B and the root-mean-square distanceffiffiffiffiffiffiffiffi
hr2i

p
of the bound ΩcccΩccc state are obtained from the

potential VðrÞ as

B ¼ 5.68ð0.77Þðþ0.46
−1.02Þ MeV;

ffiffiffiffiffiffiffiffi
hr2i

q
¼ 1.13ð0.06Þðþ0.80

−0.03Þ fm: ð5Þ

These results are consistent with the general formula
for loosely bound states [26,41] with scattering parameters
a0 and reff : B ¼ ð1 − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ð2reff=a0Þ
p Þ2=ðmΩccc

r2effÞ ≃
5.7 MeV and

ffiffiffiffiffiffiffiffi
hr2i

p
¼ a0=

ffiffiffi
2

p
≃ 1.1 fm.

Since the binding energy and the size of the bound state
from the strong interaction are not large, we need to take
into account the Coulomb repulsion VCoulombðrÞ between
Ωþþ

ccc s with finite spatial size. For this purpose, we consider
the dipole form factor for Ωþþ

ccc according to the LQCD
study on the charge distribution of heavy baryons [19]: In
the coordinate space, it corresponds to an exponential

charge distribution ρðrÞ ¼ 12
ffiffiffi
6

p
=ðπr3dÞe−2

ffiffi
6

p
r=rd , where

the charge radius rd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jhr2ichargej

q
of Ωþþ

ccc is taken to

be rd ¼ 0.410ð6Þ fm [19]. Then, we have

VCoulombðrÞ¼αe

ZZ
d3r1d3r2

ρðr1Þρðjr⃗2− r⃗jÞ
jr⃗1− r⃗2j

¼4αe
r

FðxÞ;

ð6Þ

where x ¼ 2
ffiffiffi
6

p
r=rd and FðxÞ ¼ 1 − e−x½1þ ð11=16Þxþ

ð3=16Þx2 þ ð1=48Þx3�. The effective range expansion with
Coulomb repulsion is written as

k½C2
η cot δC0 ðkÞ þ 2ηhðηÞ� ¼ −

1

aC0
þ 1

2
rCeffk

2 þOðk4Þ; ð7Þ

where δC0 ðkÞ is the phase shift in the presence of Coulomb
repulsion, C2

η ¼ ½2πη=ðe2πη − 1Þ�, η ¼ 2αemΩccc
=k,

hðηÞ ¼ Re½ΨðiηÞ� − lnðηÞ, and Ψ is the digamma function
]42 ]. To see the effect of the Coulomb repulsion, we vary αe

from zero to the physical value αphys:e ¼ 1=137.036 below.
Note that the systematic errors originated from the uncer-
tainty in rd are found to be much smaller than the statistical
errors and are neglected.
In Fig. 3, we show the inverse of scattering length 1=aC0

under the change of αe=α
phys:
e from 0 to 1. Because of the

large cancellation between the attractive strong interaction
and the Coulomb repulsion, the result at αe=α

phys:
e ¼ 1 is

located very close to unitarity with a large scattering length:

aC0 ¼ −19ð7Þðþ7
−6Þ fm;

rCeff ¼ 0.45ð0.01Þðþ0.01
−0.00Þ fm: ð8Þ

The ratio rCeff=a
C
0 ¼ −0.024ð0.010Þðþ0.006

−0.014Þ is considerably
smaller in magnitude than that of the dineutron (−0.149).
In Fig. 4, we plot the dimensionless ratio reff=a0 as a

function of reff for Ωþþ
cccΩþþ

cccð1S0Þ and Ω−Ω−ð1S0Þ with
(without) Coulomb repulsion together with the experimen-
tal values for NNð3S1-3D1Þ [43] and NNð1S0Þ [44,45]. Note
that we consider the Coulomb repulsion inΩ−Ω−ð1S0Þwith
the charge radius rd ¼ 0.57 fm for Ω− [19,46]. Among all
those dibaryon systems, Ωþþ

cccΩþþ
cccð1S0Þ is the closest to

unitarity. Note also that the nearly unitary binding of both
Ω−

sssΩ−
sssð1S0Þ and Ωþþ

cccΩþþ
cccð1S0Þ originates from a subtle

cancellation among the potential energy, the kinetic energy,
and the Coulomb repulsion.
Finally, we briefly discuss other possible systematic

errors in this work: (i) The finite cutoff effect is
O(α2saΛQCD; ðaΛQCDÞ2) thanks to the RHQ action for
the charm quark and the nonperturbative OðaÞ improve-
ment for light (u, d, s) quarks, and thus amounts toOð1Þ%.
(ii) In the vacuum polarization, light quark masses are
slightly heavier than the physical ones and the charm quark
loop is neglected. The former effect is expected to be small
since light quarks are rather irrelevant for the ΩcccΩccc
system. In fact, the range of the ΩcccΩccc potential is found
to be shorter than 1 fm. The latter effect is suppressed due
to the heavy charm quark mass and is typically Oð1Þ%
[47]. These estimates for (i) and (ii) are also in line with the
observation that our value ofmΩccc

is consistent with that in
the literature or has a deviation of ∼1% at most, where we
refer to LQCD studies by (2þ 1)-flavor at the physical
point with finite a [37], (2þ 1)-flavor with chiral and
continuum extrapolation [48], and (2þ 1þ 1)-flavor with
chiral and continuum extrapolation [49,50]. In the future,

FIG. 3. The inverse of the scattering length 1=aC0 as a function
of αe=α

phys:
e . The red solid line is the central values for

rd ¼ 0.410 fm. The statistical errors are shown by the inner
band (red), while the outer band (gray) corresponds to the
statistical and systematic errors added in quadrature. The blue
dashed line corresponds to the central values for rd ¼ 0 fm.
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these systematic errors will be evaluated explicitly.
Moreover, a finite volume analysis with proper projection
of the sink operator [29] for the ΩcccΩccc system indicates
that the truncation effect in the derivative expansion of
Uðr; r0Þ is small [38]. Further details will be reported
elsewhere.
Summary and discussion.—In this Letter, we presented a

first investigation on the scattering properties of the
ΩcccΩccc on the basis of the (2þ 1)-flavor lattice QCD
simulations with physical charm mass and nearly physical
light quark masses. The potential for ΩcccΩcccð1S0Þ
obtained by the time-dependent HAL QCDmethod without
the Coulomb interaction shows a weak repulsion at short
distances surrounded by a relatively strong attractive well,
which leads to a most charming (C ¼ 6) dibaryon with the
binding energy B ≃ 5.7 MeV and the size

ffiffiffiffiffiffiffiffi
hr2i

p
≃ 1.1 fm.

By taking into account the Coulomb repulsion between
Ωþþ

ccc s with their charge form factor obtained from LQCD,
the Ωþþ

cccΩþþ
cccð1S0Þ system turns into the unitary region with

rCeff=a
C
0 ≃ −0.024. This provides good information toward

the understanding of the interaction between heavy bary-
ons. It will be interesting in future work to study
Ω−

bbbΩ−
bbbð1S0Þ w.r.t. revealing the quark mass dependence

of the scattering parameters. Finally, our results may further
stimulate future experimental activities to measure pair-
momentum correlations of heavy baryons in high energy
pp, pA, and AA collisions [8,14].
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