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We present predictions for the gluon-fusion Higgs pT spectrum at third resummed and fixed order
(N3LL0 þ N3LO) including fiducial cuts as required by experimental measurements at the Large Hadron
Collider. Integrating the spectrum, we predict for the first time the total fiducial cross section to third order
(N3LO) and improved by resummation. The N3LO correction is enhanced by cut-induced logarithmic
effects and is not reproduced by the inclusive N3LO correction times a lower-order acceptance. These are
the highest-order predictions of their kind achieved so far at a hadron collider.

DOI: 10.1103/PhysRevLett.127.072001

Introduction.—Fiducial and differential cross-section
measurements of the discovered Higgs boson [1,2] provide
the most model-independent way to study Higgs produc-
tion at the Large Hadron Collider. They are thus central
to its physics program [3–15] and will remain so in the
future [16].
Theoretical predictions for the dominant gluon-fusion

(gg → H) Higgs production mode suffer from large pertur-
bative corrections. This has led to the calculation of the total
inclusive production cross section to third order (N3LO)
[17–25], which is made possible by treating the decay of the
Higgs boson fully inclusively. Unfortunately, this also makes
it a primarily theoretical quantity, one that cannot be
measured in experiment. The experimental measurements
necessarily involve kinematic selection and acceptance cuts
on the Higgs decay products, which reduce the cross section
by an Oð1Þ amount. Therefore, any comparison of theory
and experiment always involves a prediction of the fiducial
cross section, i.e., the cross section within the experimental
acceptance. Currently, the fiducial cross section for gg → H
is only know to second order (NNLO). A key challenge is to
calculate it at N3LO, which we do here for the first time.
To be specific, we consider H → γγ with the fiducial cuts
used by ATLAS [8,26],

pγ1
T ≥ 0.35mH; pγ2

T ≥ 0.25mH;

jηγj ≤ 1.37 or 1.52 ≤ jηγj ≤ 2.37: ð1Þ

Arguably, the most important differential cross section
of the Higgs boson is its transverse-momentum (qT)
distribution, serving as a benchmark spectrum in many
experimental analyses. At finite qT , it is known to NNLO1

[27–36], i.e., from calculating H þ 1 parton to NNLO,
including fiducial cuts, which is an important ingredient for
our results. For qT ≪ mH, the qT spectrum contains large
Sudakov logarithms of qT=mH, which must be resummed
to all orders in perturbation theory to obtain precise and
reliable predictions. So far, this resummation has been
achieved to NNLL0 and N3LL [37–44], which include
second and third order evolution and which capture in
particular all Oðα2sÞ contributions that are singular for
qT → 0. This is also the basis of the qT subtraction method
for NNLO calculations [45].
In this Letter, we obtain for the first time the resummed

qT spectrum at N3LL0 þ N3LO, both inclusively and with
fiducial cuts. This is the highest order achieved to date for a
differential distribution at a hadron collider. Compared to
N3LL, the resummation at N3LL0 incorporates the complete
Oðα3sÞ singular structure for qT → 0, i.e., all three-loop
virtual and corresponding real corrections, allowing us to
consistently match to N3LO. We incorporate the fiducial
cuts in the resummed qT spectrum following the recent
analysis in Ref. [46]. This allows us to also resum large,
so-called fiducial power corrections induced by the fiducial
cuts [46,47], and eventually to predict the total fiducial
cross section at N3LO from the integral of the resummed
fiducial qT spectrum. This constitutes the first complete
application of qT subtractions at this order. (For earlier
results and discussions, see Refs. [48,49].)
The total inclusive cross section can be considered

independently of the qT spectrum. In particular, the qT
resummation effects in the inclusive spectrum formally
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cancel in its integral. This cancellation is broken by the
fiducial power corrections, causing leftover logarithmic
contributions in the total fiducial cross section which
worsen its perturbative behavior. They are resummed by
integrating the resummed spectrum, restoring the pertur-
bative convergence. Hence, the fiducial qT spectrum is now
the more fundamental quantity, while the total fiducial
cross section becomes a derived quantity.
qT resummation with fiducial power corrections.—We

work in the narrow-width limit and factorize the cross
section into Higgs production and decay,

dσ
dqT

¼
Z

dY AðqT; Y;ΘÞWðqT; YÞ: ð2Þ

Since the Higgs is a scalar boson, Eq. (2) contains a single
hadronic structure functionWðqT; YÞ encoding the gg → H
production process. As W is a Lorentz-scalar function and
inclusive over the hadronic final state, it can only depend on
the Higgs momentum qμ and the proton momenta Pμ

a;b via

q2 ¼ m2
H and 2q · Pa;b ¼ Ecm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

H þ q⃗2T
p

e∓Y , where Y and
q⃗T are the Higgs rapidity and transverse momentum. Its
only nontrivial dependence is thus on Y and qT ¼ jq⃗T j. The
function AðqT; Y;ΘÞ in Eq. (2) encodes the Higgs decay
including fiducial cuts, collectively denoted by Θ. It corre-
sponds to the fiducial acceptance point by point in qT and Y,
such that in the inclusive case without cuts AinclðqT; YÞ ¼ 1.
Hence, W is equivalent to the inclusive spectrum.
Let us expand the qT spectrum in powers of qT=mH,

dσ
dqT

¼ dσð0Þ

dqT
þ dσð1Þ

dqT
þ dσð2Þ

dqT
þ � � �

∼
1

qT

�
Oð1Þ þO

�
qT
mH

�
þO

�
q2T
m2

H

�
þ � � �

�
: ð3Þ

The singular, leading-power term dσð0Þ=dqT scales as 1=qT
and dominates for qT ≪ mH. It contains δðqTÞ and
½lnnðqT=mHÞ=qT �þ distributions encoding the cancellation
of real and virtual infrared singularities at qT ¼ 0. The
dσðn≥1Þ=dqT are called power corrections.
Because of azimuthal symmetry,WðqT; YÞ only receives

quadratic power corrections [46,50],

WðqT; YÞ ¼ Wð0ÞðqT; YÞ þWð2ÞðqT; YÞ þ � � � ; ð4Þ

whereWð0Þ ∼ 1=qT contains the singular terms. The accep-
tance corrections are finite at qT ¼ 0, but the fiducial cuts
generically break azimuthal symmetry such that it receives
linear power corrections [46,47],

AðqT; Y;ΘÞ ¼ Að0; Y;ΘÞ
�
1þO

�
qT
mH

��
: ð5Þ

The strict leading-power spectrum is thus given by

dσð0Þ

dqT
¼

Z
dYAð0; Y;ΘÞWð0ÞðqT; YÞ: ð6Þ

The fiducial power corrections,

dσfpc

dqT
¼

Z
dY½AðqT; Y;ΘÞ − Að0; Y;ΘÞ�Wð0ÞðqT; YÞ;

ð7Þ

were analyzed in Refs. [46,47]. They include all linear
power corrections dσð1Þ=dqT and are absent in the inclusive
spectrum. They are quite subtle, and can be further
enhanced to OðqT=pLÞ, where pL is an effective kinematic
scale set by the fiducial cuts with typically pL ≪ mH.
This prohibits expanding AðqT; Y;ΘÞ even for qT ≪ mH
once qT ∼ pL. For example, for the photon pcut

T ,
pL ∼mH − 2pcut

T . For the cuts in Eq. (1), the expansion
of A starts failing for qT ≳ 10 GeV, where the inclusive
power corrections from Wð2Þ are at the few-percent level.
It is thus critical to use the exact qT-dependent acceptance
and take

dσsing

dqT
¼

Z
dY AðqT; Y;ΘÞWð0ÞðqT; YÞ ð8Þ

as the leading “singular” contribution at small qT , corre-
sponding to the sum of Eqs. (6) and (7). The remaining
“nonsingular” contributions,

dσnons

dqT
¼

Z
dY AðqT; Y;ΘÞ½Wð2ÞðqT; YÞ þ � � ��; ð9Þ

are then suppressed by Oðq2T=m2
HÞ.

In general, and for the ATLAS cuts in particular,
AðqT; Y;ΘÞ is a very nasty function given by a boosted
phase-space integral over a conjunction of complicated θ
functions encoding all cuts. Nevertheless, using a dedicated
semianalytic algorithm we are able to evaluate it with
sufficient numerical speed and accuracy.
As A itself does not contain large logarithms, resumming

Wð0Þ in Eq. (8) correctly resums also the fiducial power
corrections in Eq. (7) to the same order [46]. The
resummation of Wð0Þ is equivalent to that of the leading-
power inclusive spectrum, and follows from its factoriza-
tion theorem originally derived in Refs. [51–53] or
equivalent formulations [54–60]. We employ soft-collinear
effective theory [61–65] with rapidity renormalization
[58,66] using the exponential regulator [60], where

Wð0ÞðqT; YÞ

¼ Hðm2
H; μÞ

Z
d2k⃗ad2k⃗bd2k⃗sδðqT − jk⃗a þ k⃗b þ k⃗sjÞ

× Bμν
g ðxa; k⃗a; μ; νÞBg μνðxb; k⃗b; μ; νÞSðk⃗s; μ; νÞ: ð10Þ
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The hard function H contains the effective gg → H form
factor. The beam functions Bμν

g describe collinear radiation

with total transverse momentum k⃗a;b and longitudinal
momentum fractions xa;b ¼ ðmH=EcmÞe�Y . The soft
function S describes soft radiation with total transverse
momentum k⃗s.
All functions in Eq. (10) are renormalized objects, with μ

and ν denoting their virtuality and rapidity renormalization
scales. The all-order resummation follows by first evalu-
ating each function at fixed order at its own natural
boundary scale(s) μH;B;S, νB;S. These boundary conditions
are then evolved to a common (arbitrary) point in μ and ν
by solving the coupled system of renormalization group
equations. The exact solution for the qT distribution is
formally equivalent [67] to the canonical solution in
conjugate (bT) space, which is the approach we follow
here; see Refs. [46,67,68] for details. At N3LL0 (N3LL) we
require the N3LO (NNLO) boundary conditions for the
hard [69–73] and beam and soft functions [49,74–78],
the three-loop noncusp anomalous dimensions [49,74,75,
79–82], and the four-loop β function [83–86] and gluon
cusp anomalous dimension [87–93]. At NNLL, all ingre-
dients enter at one order lower than at N3LL.
The hard function H contains timelike logarithms

ln½ð−m2
H − i0Þ=μ2Þ�, which are resummed by using an

imaginary boundary scale μH ¼ −imH. This significantly
improves the perturbative convergence compared to the
spacelike choice μH ¼ mH [94–98]. It is advantageous to
apply this timelike resummation not just to Wð0Þ, which
contains H naturally, but also to the full WðqT; YÞ, as
demonstrated for the rapidity spectrum in Ref. [73], or
equivalently the nonsingular corrections, as in similar
contexts [81,99]. To do so, we take [73]

WðqT; YÞ ¼ Hðm2
H; μFOÞ

�
WðqT; YÞ

Hðm2
H; μFOÞ

�
FO
; ð11Þ

and analogously for dσnons=dqT. The ratio in square
brackets is expanded to fixed order in αsðμFOÞ, while
Hðm2

H; μFOÞ in front is evolved from μH to μFO at the
same order as in Eq. (10). This yields substantial improve-
ments up to qT ∼ 200 GeV, which is not unexpected, as
Wð2Þ will contain H in parts of its factorization. (Beyond
qT ≳ 200 GeV, a dynamic hard scale ∼qT becomes more
appropriate and the heavy-top limit breaks down, indicating
that the hard interaction has become completely unrelated
to the H þ 0-parton process.)
The fixed-order coefficients of dσnons=dqT for qT > 0

are obtained as

dσnonsFO

dqT
¼ dσFO1

dqT
−
dσsingFO

dqT
: ð12Þ

At NnLO (≡NnLO0), or Oðαns Þ relative to the LO Born
cross section, we need the full spectrum at Nn−1LO1. At
LO1 and NLO1, we integrate our own analytic implemen-
tation of WðqT; YÞ against AðqT; Y;ΘÞ, allowing us to
reach 10−4 relative precision down to qT ¼ 0.1 GeV at
little computational cost. At NLO1, we implement results
from Ref. [100] after performing the necessary renormal-
ization. The implementation is checked against the numeri-
cal code from Ref. [29]. At NNLO1, we use existing results
[41,42] from NNLOjet [30,34] (see below).
The final resummed qT spectrum is then given by

dσ
dqT

¼ dσsing

dqT
þ dσnons

dqT
: ð13Þ

While for qT ≪ mH the singular and nonsingular contri-
butions can be considered separately, this separation
becomes meaningless for qT ∼mH. To obtain a valid
prediction there, the qT resummation is switched off, only
keeping the timelike resummation, by choosing common
boundary scales μS;B ¼ νS;B ¼ iμH ¼ μFO, such that sin-
gular and nonsingular exactly recombine at fixed order
into the full result. We use qT-dependent profile scales
[46,99,101] to enforce the correct qT resummation for
qT ≪ mH and smoothly turn it off toward qT ∼mH.
We identify several sources of perturbative uncertainties,

namely fixed-order (ΔFO), qT resummation (ΔqT ), timelike
resummation (Δφ), and matching uncertainties (Δmatch),
which are estimated via appropriate scale variations as
detailed in Refs. [46,73]. They are considered independent
sources and are consequently added in quadrature to obtain
the total uncertainty. We neglect nonperturbative effects at
small qT , which are expected to be ∼Λ2

QCD=q
2
T and smaller

than the current perturbative uncertainties.
Our numerical results are obtained with SCETlib [102].

We use the PDF4LHC15 NNLO parton distribution func-
tions (PDFs) [103], αsðmZÞ¼0.118, μFO¼mH¼125GeV.
We work in the top limit rescaled with the exact LO
dependence on mt ¼ 172.5 GeV (rEFT). By default, we
exclude the H → γγ branching ratio (Bγγ) from our pre-
dictions, σ ≡ σfid=Bγγ . Our qT spectrum at N3LL0 þ N3LO
is presented in Fig. 1, showing excellent perturbative
convergence. Below qT ≲ 10 GeV, this would not be the
case without resumming the fiducial power corrections. We
also compare to preliminary ATLAS measurements [26],
for which we subtract the non-gluon-fusion background
and divide by the photon isolation efficiency [8] and Bγγ .
Total fiducial cross section.—If (and only if) the singular

distributional structure of dσð0Þ=dqT is known, the qT
spectrum can be integrated to obtain the total cross section.
This is the basis of qT subtractions [45],

σ ¼ σsubðqoffT Þ þ
Z

dqT

�
dσ
dqT

−
dσsub

dqT
θðqT ≤ qoffT Þ

�
: ð14Þ
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Here, dσsub ¼ dσð0Þ½1þOðqT=mHÞ� contains the singular
terms, with σsubðqoffT Þ its distributional integral over
qT ≤ qoffT , while the term in brackets is numerically
integrable. Taking σsub ≡ σsing, we get

σ ¼ σsingðqoffT Þ þ
Z

qoffT

0

dqT
dσnons

dqT
þ
Z
qoffT

dqT
dσ
dqT

; ð15Þ

which is exactly the integral of Eq. (13). The subtractions
here are differential in qT , where qoffT ∼ 10–100 GeV
determines the range over which they act and exactly
cancels between all terms.
To integrate dσnons=dqT in Eq. (15) down to qT ¼ 0,

we parametrize the fixed-order coefficients in Eq. (12) by
their leading behavior,

qT
dσnonsFO

dqT

����
αns

¼ q2T
m2

H

X2n−1
k¼0

�
ak þ bk

qT
mH

þ � � �
�
lnk

q2T
m2

H
; ð16Þ

and perform a fit to this parametrization, which we then
integrate analytically. We follow the fit procedure discussed
in detail in Refs. [104,105] including the selection of fit
parameters and range, extended to the present case. In
particular, to obtain reliable, unbiased fit results, we must

account for the uncertainties in the parametrization from yet
higher-power corrections. This is done by including the
next higher-power coefficients (bk;…) as nuisance param-
eters to the extent required by the fit range and precision. In
the fiducial case, all bk coefficients are required. The fit has
been validated extensively. As a benchmark, we correctly
reproduce the αs (α2s) coefficients of the total inclusive cross
section to better than 10−5 (10−4) relative precision.
At N3LO, we use existing NNLOjet results [41,42] to get

nonsingular data for 0.74 GeVð4 GeVÞ ≤ qT ≤ qoffT for
inclusive log bins (for inclusive and fiducial linear bins).
While these data are not yet precise enough toward small
qT to give a stable fit on their own, we exploit that in
the inclusive case, the known α3s coefficient of the total
inclusive cross section [25,106] provides a sufficiently
strong additional constraint to obtain a reliable fit. In the
fiducial case, we exploit that the inclusive and fiducial
ak are related, arising from the same Y-dependent coef-
ficient functions integrated either inclusively or against
Að0; Y;ΘÞ. At NLO and NNLO, their ratios lie between 0.4
and 0.55. At N3LO, we thus perform a simultaneous fit to
inclusive and fiducial data, using 12 fiducial and 8 inclusive
parameters, with a loose 1σ constraint on the fiducial ak to
be 0.4–0.55 times their inclusive counterparts. (The bk;…
parameters are unrelated and unconstrained.) We stress that
this does not amount to rescaling any part of the fiducial
NNLO cross section with an inclusive N3LO K factor. It
merely tells the fit to only consider ak of roughly the right
expected size. This is sufficient to break degeneracies and
yields a stable fit, with an acceptable ∼0.1 pb uncertainty
for the fiducial nonsingular integral (Δnons).
The often-used qT slicing approach amounts to taking

qoffT → qcutT ∼ 1 GeV and simply dropping the power cor-
rections below qcutT . The nonsingular and fiducial power
corrections are shown in Fig. 2. The latter are huge at α3s ,
and even at α2s only become really negligible below

FIG. 2. Fiducial and nonsingular power corrections integrated
up to qT ≤ qcutT . The yellow band shows Δnons from the fit.

FIG. 1. The gg → H qT spectrum up to N3LL0 þ N3LO
compared to preliminary ATLAS measurements [26].
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qcutT ≲ 10−2 GeV. This is why it is critical for us to include
them in the subtractions (and to resum them). The remain-
ing nonsingular corrections at α3s are about 10 times
larger than at α2s , and at qcutT ¼ 1–5 GeV still contribute
5%–10% of the total α3s coefficient. Together with the
current precision of the nonsingular data, this makes
the above differential subtraction procedure essential to
our results.
Evaluating Eq. (15) either at fixed order or including

resummation, we obtain our final results for the total
fiducial cross section presented in Fig. 3. The poor
convergence at fixed order is largely due to the fiducial
power corrections. To see this,

σFOincl ¼ 13.80½1þ 1.291þ 0.783þ 0.299� pb;
σFOfid =Bγγ ¼ 6.928½1þ ð1.300þ 0.129fpcÞ

þ ð0.784 − 0.061fpcÞ
þ ð0.331þ 0.150fpcÞ� pb: ð17Þ

The successive terms are the contributions from each order
in αs. The numbers with “fpc” subscript are the contribu-
tions of the fiducial power corrections in Eq. (7) integrated
over qT ≤ 130 GeV. The corrections without them are
almost identical to the inclusive case. The fiducial power
corrections break this would-be universal acceptance effect,
causing a 10% correction at NLO and NNLO and a 50%
correction at N3LO and showing no perturbative
convergence.
Integrating Wð0Þ over qT, all qT logarithms and resum-

mation effects formally have to cancel. (Numerically,
this strongly depends on the specific implementation of
resummation and matching. We have verified explicitly
that it is well satisfied in our approach.) For the fiducial
power corrections, the nontrivial qT dependence of the
acceptance spoils this cancellation and induces residual
logarithmic dependence on pL=mH in the integral. This

causes the large corrections in Eq. (17), which get
resummed using the resummed σsing in Eq. (15).
Together with timelike resummation, this leads to the
excellent convergence of the resummed results in Fig. 3,
very similar to the inclusive case [73],

σincl ¼ 24.16½1þ 0.756þ 0.207þ 0.024� pb;
σfid=Bγγ ¼ 12.89½1þ 0.749þ 0.171þ 0.053� pb: ð18Þ

To conclude, our best result for the fiducial Higgs cross
section at N3LL0 þ N3LO for the cuts in Eq. (1) reads

σfid=Bγγ ¼ ð25.41� 0.59FO � 0.21qT � 0.17φ

� 0.06match � 0.20nonsÞ pb
¼ ð25.41� 0.68pertÞ pb: ð19Þ

Multiplying by Bγγ ¼ ð2.270� 0.047Þ × 10−3 [107–109],

σfid ¼ 57.69ð1� 2.7%pert � 2.1%B

� 3.2%PDFþαs � 2%EW � 2%t;b;cÞ fb; ð20Þ

where we also included approximations of additional
uncertainties. The PDFþ αs uncertainty is taken from
the inclusive case [24,109]. For the inclusive cross section,
NLO electroweak effects give a þ5% correction [110],
while the net effect of finite top-mass, bottom, and charm
contributions is −5% (in the pole scheme we use). We can
expect roughly similar acceptance corrections for both, and
therefore keep the central result unchanged but include a
conservative 2% uncertainty (40% of the expected correc-
tion) for each effect. Their proper treatment requires
incorporating them into the resummation framework,
which we leave for future work.

We are grateful to Xuan Chen for providing us with
the NNLOjet results and for communication about them.
We would also like to thank our ATLAS colleagues for
their efforts in making the preliminary results of Ref. [26]
publicly available. This work was supported in part by
the Office of Nuclear Physics of the U.S. Department of
Energy under Contract No. DE-SC0011090 and within the
framework of the TMD Topical Collaboration, the Deutsche
Forschungsgemeinschaft (DFG) under Germany’s
Excellence Strategy–EXC 2121 “Quantum Universe”–
390833306, and the PIER Hamburg Seed Project PHM-
2019-01.

Note added.—Recently, we became aware of complemen-
tary work computing fiducial rapidity spectra in Higgs
production at N3LO using the projection-to-Born approach
[111]. The perturbative instabilities observed there are
avoided here by resumming the responsible fiducial power
corrections.

FIG. 3. Total fiducial gg → H → γγ cross section at fixed
N3LO (this work) and including resummation (also this work),
where Δresum ≡ ΔqT ⊕ Δφ ⊕ Δmatch, compared to preliminary
ATLAS measurements [26].
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