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In this work, we investigate how quickly local perturbations propagate in interacting boson systems with
Bose-Hubbard–type Hamiltonians. In general, these systems have unbounded local energies, and arbitrarily
fast information propagation may occur. We focus on a specific but experimentally natural situation in
which the number of bosons at any one site in the unperturbed initial state is approximately limited. We
rigorously prove the existence of an almost-linear information-propagation light cone, thus establishing a
Lieb-Robinson bound: the wave front grows at most as t log2ðtÞ. We prove the clustering theorem for
gapped ground states and study the time complexity of classically simulating one-dimensional quench
dynamics, a topic of great practical interest.
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Introduction.—In nonrelativistic quantum many-body
systems, the speed limit of information propagation is
characterized by the Lieb-Robinson bound [1–3], an
effective light cone outside which the amount of transferred
information rapidly decays with distance. In standard spin
models such as the transverse Ising model, the light cone is
linear over time and characterized by the Lieb-Robinson
velocity, which depends only on the system details. As a
fundamental restriction applied to generic many-body
quantum systems, the Lieb-Robinson bound has been
utilized to establish the clustering theorem on bipartite
correlations in ground states [4–6] and efficient classical
and quantum algorithms to simulate quantum many-body
dynamics [7–9]. It has featured in many fields of quantum
many-body physics including condensed matter theory
[10–16], statistical mechanics [17–23], high-energy phys-
ics [24–30], and quantum information [31–35].
The Lieb-Robinson bound and the existence of a linear

light cone are well understood under the following two
conditions [3,5,6,36,37]: (i) the interaction is short-range,
and (ii) the Hamiltonian is locally bounded. If either of
these conditions is broken, as often happens in real-world
quantum systems, the shape of the linear light cone
becomes quite complicated. When there are long-range
interactions, breaking the first condition, a comprehensive
characterization of the shape of the light cone has been
achieved [28,29,38–42]. However, it remains challenging
to clarify the Lieb-Robinson bound when the second
condition breaks down.
Quantum boson systems are representative examples of

the breakdown of this second condition with locally
unbounded Hamiltonians. The difficulty lies in the fact
that the standard approach for the Lieb-Robinson bound
necessarily results in a Lieb-Robinson velocity proportional

to the norm of the local energy. When N bosons clump at a
single location, the on-site energy can be as large as
polyðNÞ, leading to an infinite Lieb-Robinson velocity
as N → ∞. Even though it is quite unlikely that many
bosons will clump together in realistic experiments, the
theoretical possibility of such situations must be taken into
account. If harmonic and anharmonic systems [43–47] and
spin boson models [48–50] are considered, the Lieb-
Robinson bound with the linear light cone has been
established. However, we have no hope of unconditionally
proving the existence of a Lieb-Robinson bound without
restricting the form of Hamiltonians or initial states. (In
Ref. [51], Eisert and Gross provided 1D quantum boson
systems with nearest-neighbor interactions, inducing an
exponential speed of information propagation.)
Recent experiments have focused on interacting bosonic

systems of the Bose-Hubbard type [52–66], which typically
appear in cold atom setups. Since the earliest experiments
on the Lieb-Robinson bound [55,56], there have been many
attempts to clarify information propagation in these models
rigorously. However, with a few exceptions [67,68], estab-
lishing the Lieb-Robinson bound in Bose-Hubbard–type
models remains an open problem. A previous rigorous
study [67] showed that initially concentrated bosons in the
vacuum spread at a finite speed. In Ref. [68], the Lieb-
Robinson velocity was qualitatively improved from OðNÞ
to Oð ffiffiffiffi

N
p Þ (still infinitely large in the limit of N → ∞),

where N is the total number of bosons. On the other hand,
numerical calculations and theoretical case studies indicate
that a linear light cone should be observed in practical
settings such as quench dynamics [69–76]. The most
natural condition is to require a finite number of bosons
at any one site in the initial state, for example, a Mott state.
However, this condition can break down over time, and a
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large bias in the boson distribution may cause an un-
expected acceleration of information propagation [67].
Until now, no theoretical tools have been developed to
overcome this obstacle.
In this work, we establish the Lieb-Robinson bound with

an almost linear light conewhen a local perturbation is added
to quantum states that are initially time independent and
have low boson density [see the condition (6)]. Our Lieb-
Robinson bound characterizes a wave front that propagates
as t log2ðtÞ with time. As a practical application, we derive
the clustering theorem for noncritical ground states by
extending the technique in [4–6]. In addition, we extend
our theory to analyze the time complexity of computing
quantum dynamics by quenching the Hamiltonian param-
eter, a topic ofmajor research interest [69–93].We rigorously
establish the time complexity of et log

3ðtÞ to simulate local
quench dynamics for one-dimensional Bose-Hubbard–type
Hamiltonians.
Setup and main result.—We consider a quantum system

on a finite-dimensional lattice (graph), where bosons
interact with each other. An unbounded number of bosons
can sit on each of the sites, and the local Hilbert dimension
is thus infinitely large. We denote byΛ the set of all sites on
the lattice. For an arbitrary partial set X ⊆ Λ, we denote the
cardinality (the number of sites contained in X) by jXj. For
arbitrary subsets X; Y ⊆ Λ, we define dX;Y as the shortest
path length on the graph that connects X and Y. For a subset
X ⊆ Λ, we define the extended subset X½r� by length r as

X½r� ≔ fi ∈ ΛjdX;i ≤ rg; ð1Þ

where X½0� ¼ X and r is an arbitrary positive number
(i.e., r ∈ Rþ).
We define bi and b†i as the annihilation and creation

operators of the boson, respectively. We also define n̂i ≔
b†i bi as the number operator of bosons on site i. We
consider a Hamiltonian of the form

H ≔
X
hi;ji

Ji;jðbib†j þ H:c:Þ þ
X

Z⊂Λ∶jZj≤k
vZ; ð2Þ

where jJi;jj ≤ J̄ and
P

hi;ji denotes summation over all
pairs of adjacent sites fi; jg on the lattice. Here, vZ consists
of finite-range boson-boson interactions on subset Z. We
now assume that vZ is given as a function of the number
operators fn̂igi∈Z. The simplest example is the Bose-
Hubbard model:

H ¼
X
hi;ji

Jðbib†j þ H:c:Þ þ U
2

X
i∈Λ

n̂iðn̂i − 1Þ − μ
X
i∈Λ

n̂i;

whereU and μ areOð1Þ constants. For an arbitrary operator
O, the time evolution due to another operator A is

OðA; tÞ ≔ eiAtOe−iAt: ð3Þ

[We abbreviate OðH; tÞ as OðtÞ for simplicity.]
Let ρ0 be a time-independent quantum state, i.e.,

½ρ0; H� ¼ 0. We consider propagation of a local perturba-
tion to ρ0 such as ρ → Oi0ρ0O

†
i0
, where i0 ∈ Λ and Oi0 can

take the form of a projection onto site i0. We are interested
in how fast this perturbation propagates. Mathematically,
after the time evolution, ρðtÞ is given by Oi0ðtÞρ0Oi0ðtÞ†.
Thus, we must estimate the approximation error of

Oi0ðtÞρ0 ≈OðtÞ
i0½R�ρ0; ð4Þ

where OðtÞ
i0½R� is an appropriate operator supported on subset

i0½R� [see the notation (1)]. Our main result concerns the
approximation error for finite R (see Sec. S.II. in the
Supplemental Material [94] for the formal expression).
Following Ref. [41], we define the shape of the light

cone in the following sense. We say that the Hamiltonian
dynamics e−iHt have an effective light cone with velocity
vt;δ if the following inequality holds for an arbitrary error
δ ∈ R and t:

k½Oi0ðtÞ −OðtÞ
i0½R��k ≤ δkOi0k for R ≥ vt;δjtj: ð5Þ

When vt;δ converges to a finite value for t → ∞ (i.e.,
v∞;δ ¼ const:), we say that the effective light cone is linear.
From the definition, the amount of information propagation
is smaller than δ outside the region separated by the
distance vt;δjtj.
Main theorem.—Let us assume that the number of boson

creations by Oi0 is finitely bounded. Then, for an arbitrary
time-independent quantum state ρ0 satisfying the low-
boson-density condition

max
i∈Λ

trðec0ðn̂i−q̄Þρ0Þ ≤ 1 c0 ≤ 1; ð6Þ

we can approximate Oi0ðtÞρ0 by another operator OðtÞ
i0½R�

supported on i0½R� with the following approximation error:

kðOi0ðtÞ −OðtÞ
i0½R�Þρ0k

≤ kOi0k exp
�
c0q̄ − C1

R
t logðRÞ þ C2 logðRÞ

�
; ð7Þ

where t ≥ 1, and C1 and C2 are constants of Oð1Þ that are
independent of q̄ and only depend on the details of the
system. For a general operator OX0

, we can obtain a similar
inequality by slightly changing (7).
Condition (6) ensures that the probability for many

bosons to be concentrated on one site is exponentially
small in the initial state ρ0. We notice that the condition can
break down as time increases. By applying the inequality
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(7) to (5), we obtain vt;δ ∝ log2ðtÞ½logð1=δÞ þ c0q̄�. Hence,
information propagation is restricted in the region that is
separated from i0 by at most Oðq̄Þt log2ðtÞ. Therefore, we
can ensure that the acceleration of information propagation
observed in Ref. [51] cannot occur in our model, because
the speed of information becomes at most polylogarithmi-
cally large with time, i.e., ≤ log2ðtÞ.
Clustering theorem.—As an immediate application of

the main theorem, we consider the exponential decay of
bipartite correlations in gapped ground states, i.e., the
clustering theorem. Here, we denote the nondegenerate
ground state by jE0i and the spectral gap by ΔE. We prove
an upper bound on the correlation function CorðOX;
OYÞ ≔ hE0jOXOY jE0i − hE0jOXjE0ihE0jOY jE0i, where
OX and OY are operators supported on X and Y. For
simplicity, we let q̄ ¼ Oð1Þ. Then, the following inequality
holds if jE0i satisfies condition (6) (see Sec. S.III. in the
Supplemental Material [94]):

CorðOX;OYÞ ≤ C3kOXk · kOYk exp
 
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C0
3ΔE

logðRÞR
s !

; ð8Þ

where C3, C0
3, and C00

3 are Oð1Þ constants. From the
inequality, the bipartite correlations decay beyond
R ≈ Õð1=ΔEÞ. This subexponential decay, which is weaker
than the exponential decay described in Refs. [4–6], is a
consequence of the asymptotic form of e−OðR=ðt log RÞÞ in our
Lieb-Robinson bound (7).
Application to quench dynamics.—We next consider the

application of our results to quench dynamics, the most
popular setup in the study of nonequilibrium quantum
systems. Here, a system is initially prepared in a steady
state ρ0 (e.g., the ground state), and then evolves unitarily in
time under the sudden change of the Hamiltonian H → H0.
We consider the case where the Hamiltonian H0 is given by
H0 ¼ H þ hX0

, where we assume H0 still has the form of
Eq. (2). In addition, the interaction hX0

includes only
polynomials of finite degree in fn̂igi∈X0

, such as n̂2i and
n̂2i n̂

3
j , etc.
Our purpose is to find an appropriate unitary ope-

rator Ui0½R� supported on i0½R� that gives ρ0ðH0; tÞ≈
Ui0½R�ρ0U

†
i0½R�. We can prove the following theorem (see

Sec. S.IX. in the Supplemental Material [94] for details):
Quench theorem.—For initial state ρ0 with the condi-

tions ½ρ0; H� ¼ 0 and (6), we have

kρ0ðH0; tÞ −Ui0½R�ρ0U
†
i0½R�k1

≤ exp

�
c0q̄ − C0

1

ðR − r0Þ
t logðRÞ þ C0

2 logðRÞ
�
; ð9Þ

where we define r0 such that X0 ∈ i0½r0� for an appropriate
i0 ∈ Λ, and C0

1 and C0
2 are constants of Oð1Þ that are

independent of q̄ and only depend on the details of the

system. Moreover, the computational cost of constructing
the unitary operator Ui0½R� is at most exp ½OðRD logðRÞÞ�.
This theorem immediately gives the following corollary

on the time complexity of preparing Ui0½R�:
Corollary.—The computational cost of calculating the

quench dynamics on 1D chains up to an error ϵ is at most

exp ½t log3ðtÞ þ t logð1=ϵÞ log log2ð1=ϵÞ�; ð10Þ

where we assume r0 ¼ Oð1Þ and q̄ ¼ Oð1Þ. When the
error ϵ is fixed, we have a time complexity of et log

3ðtÞ. This
is the first rigorous result on the efficiency of the classical
simulation of interacting boson systems.
Proof of the main theorem.—For the proof, we connect

the Lieb-Robinson bounds for small time evolutions step
by step, based on previous analyses of the Lieb-Robinson
bound in long-range interacting systems [29,97]. The great
merit of this approach is that we have to derive the Lieb-
Robinson bound only for short-time evolution. We decom-
pose the total time t into mt pieces and define Δt ≔ t=mt
withmt ¼ OðtÞ. Note that we can makeΔt arbitrarily small
by making mt sufficiently large. For a fixed R, we define
the subset Xm as follows:

Xm ≔ i0½mΔr�; Δr ¼ bR=mtc;

where Xm ¼ X0½mΔr� and Xmt
⊆ i0½R�.

We connect the step-by-step approximations of the short-
time evolution to reach the final approximation. Under the
assumption of the time invariance of ρ0 (i.e., ρ0ðtÞ ¼ ρ), we
can derive the following inequality [29]:

k½Oi0ðmtΔtÞ −OðmtÞ
Xmt

�ρ0k1
≤
Xmt

m¼1

k½Oðm−1Þ
Xm−1

ðΔtÞ −OðmÞ
Xm

�ρ0k1; ð11Þ

where Oð0Þ
X0

¼ OX0
, and OðmÞ

Xm
is recursively defined by

approximating OðmÞ
Xm

ðΔtÞ. When ρ0 depends on the time, a
severe modification is required in the inequality (11) (see
Sec. IV. B in the Supplemental Material [94]). In order to
reduce (11) to the main inequality (7), we need to obtain

Oðm−1Þ
Xm−1

ðΔtÞρ0 ≈UðmÞ†
Xm

Oðm−1Þ
Xm−1

UðmÞ
Xm

ρ0 ¼ OðmÞ
Xm

ρ0; ð12Þ

by using an appropriate unitary operator supported on Xm.
Therefore, our primary task is to estimate the approxi-

mation error of Eq. (12), which gives the Lieb-Robinson
bound for the short time Δt. We can prove that, for a
general operator OX with X ⊆ i½r� (i ∈ Λ), there exists a
unitary operator UX½l� supported on X½l� such that
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kðOXðtÞ − U†
X½l�OXUX½l�Þρ0k1

≤ kOXkec0q̄−l= logðrÞþC0 logðrÞ; ð13Þ

for t ≤ Δt0 (see Subtheorem 1 in the Supplemental Material
[94]), where C0 and Δt0 are Oð1Þ constants. We here
choose the time width Δt such that Δt ≤ Δt0. By using the
inequality (13) with l ¼ Δr and t ¼ Δt, we can reduce the
inequality (11) to the desired form (7) by choosing C1 and
C2 appropriately. This completes the proof of the main
theorem. ▪
Short-time Lieb-Robinson bound.—We have seen that

the bosonic Lieb-Robinson bound can be immediately
derived if we can prove the inequality (13), which includes
all the difficulties in our proof. We will now provide a
sketch of the proof; a fuller and more formal presentation
can be found in the Supplemental Material [94] (Secs. S.V.,
S.VI., S.VII. and S.VIII.).
We first consider the boson density after short-time

evolution (see Sec. S.VI. in the Supplemental Material
[94]). For this purpose, we need to estimate

tr½n̂si ρ̃ðtÞ�; ρ̃ðtÞ ¼ e−iHtOXρ0O
†
Xe

iHt; ð14Þ

with s ∈ N. This quantity characterizes the influence of the
perturbation OX on the boson density after time evolution.
In the state ρ̃ð0Þ, the boson number n̂i (i ∉ X) is exponen-
tially suppressed because of condition (6), while the bosons
may be highly concentrated in the region X. Time evolution
will cause these concentrated bosons to spread outside X
(see Fig. 1).
In order to characterize the dynamics of the bosons, we

utilize the method in Ref. [67]. We can prove that

tr½n̂si ρ̃ðtÞ�
kOXk2

≤ c01e
c0q̄jXj3ðc1sjXjÞse−di;X þc001e

c0q̄ðc1sÞs; ð15Þ

where c1, c01, and c
00
1 depend on the time as eOðtÞ. The above

upper bound induces an exponential increase of the boson
density with time; hence we cannot use it for arbitrarily
large t. However, the key point of our proof method is that
we only need to treat the short-time evolution, where the
coefficients c1, c01, and c001 are Oð1Þ constants. By using
Markov’s inequality, we can ensure that the probability
distribution of the boson number n̂i obeys

PðtÞ
i;≥z0 ≤ 2c001e

c0q̄kOXk2
�
c̃1di;X
z0

�
c̃0
1
di;X= logðrÞ ð16Þ

under the condition di;X ≳ logðrÞ, where PðtÞ
i;≥z0 is the

probability that z0 or more bosons are observed at the site
i. (Recall that by definition X ⊆ i½r�.) Finally, we remark
that it is essential to the proof that the Hamiltonian be the
form (2); if the Hamiltonian includes interactions such as
n̂in̂jbib

†
j , the inequality (15) may break down even for

small t.
In the second technique, we construct an effective

Hamiltonian that has bounded local energy in a specific
region and approximates the exact dynamics (see Sec. S.VII.
in the Supplemental Material [94]). The inequality (16)
implies that the boson number n̂i is strongly suppressedwhen
the site i is sufficiently separated from the region X. Hence,
we expect that, in the original HamiltonianH, the maximum
boson number at one site can be truncated during short-time
evolution. We first define two regions L1 ≔ X½l0� and
L2 ≔ X½2l0�, where the length l0 is appropriately chosen.
We then consider the boson truncation in the region L̃which
is defined as (see Fig. 2)

L̃ ≔ L2nL1: ð17Þ

We now define Π̄L̃;q as the projection onto the eigen-
space such that the boson number n̂i (∀ i ∈ L̃) is truncated
up to q, i.e., kn̂iΠ̄L̃;qk ≤ q. We then approximate the time-
evolution operator e−iHt by using an effective Hamiltonian
H̃½L̃; q�, defined by

H̃½L̃; q� ≔ Π̄L̃;qHΠ̄L̃;q; ð18Þ

with a bounded local energy in the region L̃. In general, the
time evolution OXðtÞ cannot be approximated by
OXðH̃½L̃; q�; tÞ at all, where we have used the notation
(3). However, we are only interested in the norm difference
between OXðtÞρ0 and OXðH̃½L̃; q�; tÞρ0. We can prove

FIG. 1. Boson density after time evolution. In Ref. [67], all
bosons were initially concentrated in a region X on the vacuum
and were shown to spread beyond it with a finite velocity.
However, if there is initially a finite number of bosons outside X,
the upper bound of the boson number increases exponentially
with t. This spoils the approach of Ref. [67] in general setups for
long-time evolution. Our approach only considers the short time
t ¼ Oð1Þ, when the exponential increase eOðtÞ is still Oð1Þ. We
then ensure that the boson number distribution for n̂i exponen-
tially decays if the site i of interest is sufficiently separated from
the region X.
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k½OXðtÞ −OXðH̃½L̃; ηl0�; tÞ�ρ0k1
≤
kOXk
2

ec0q̄e−2l0= logðrÞ ð19Þ

for q ¼ ηl0 and l0 ≥ C0 log2ðrÞ, where η and C0 are Oð1Þ
constants which are independent of q̄, and r has been
defined by X ⊆ i½r�. From this upper bound, we can see that
the error exponentially decreases with the number of the
boson truncation. Thus, by using the Hamiltonian
H̃½L̃; ηl0�, the biggest obstacle, namely, the unboundedness
of the interaction norms, has been removed, at least in the
region L̃. However, outside this region, the norm is still
unbounded. We thus need to consider how to derive the
Lieb-Robinson bound for e−iH̃½L̃;ηl0�t only from the finite-
ness of the Hamiltonian norm in the region L̃.
Our final task is to approximate the time evolution

OXðH̃½L̃; ηl0�; tÞ by U†
L2
OXUL2

, where UL2
is an appro-

priate unitary operator supported on the subset L2 (see
Sec. S.VIII. in the Supplemental Material [94]). By a
careful calculation based on the standard approach to
deriving the Lieb-Robinson bound, we can show that the
approximation error obeys

kOXðH̃½L̃;ηl0�;tÞ−U†
L2
OXUL2

k≤kOXk
2

e−2l0= logðrÞ; ð20Þ

assuming t ≤ Δt0 with Δt0 an Oð1Þ constant. Therefore,
under the conditions l0 ≥ C0 log2ðrÞ and t ≤ Δt0, we have
the inequalities (19) and (20), which together yield the
desired inequality (13) since ec0q̄ ≥ 1.
Conclusion.—In this work, we have established the

Lieb-Robinson bound (7) with an almost-linear light cone
R ∝ t log2ðtÞ for arbitrary initial steady states under the
condition (6). Our bound leads to the clustering theorem (8)

for gapped ground states and the efficient simulation of the
quench dynamics as in (10). Our result gives the first
rigorous characterization of the light cone of interacting
boson systems under experimentally realistic conditions.
Nevertheless, this Lieb-Robinson bound might be further

improved. First, the asymptotic form e−R=ðt log RÞ in (7)
could be changed to e−Rþvt, which would induce a strictly
linear light cone for information propagation. Second, there
remains the challenge to clarify the class of quantum states
that rigorously satisfies the assumption (6). Third, regard-
ing the time independence of ρ0, we conjecture that an
information wave front of at least polynomial form (i.e.,
R ∝ tζ, ζ ≥ 1) can be derived when ρ0 is time dependent.
Although our current techniques cannot immediately
accommodate these improvements, we hope to develop a
better Lieb-Robinson bound for interacting bosons in the
future.
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Note added.—For the reader’s information, we would like
to refer to a subsequent study by Yin and Lucas [98], which
proves the linear light cone for interacting boson systems in
another specific setup.
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