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It is highly nontrivial to what extent we can deduce the relaxation behavior of a quantum dissipative
system from the spectral gap of the Liouvillian that governs the time evolution of the density matrix. We
investigate the relaxation processes of a quantum dissipative system that exhibits the Liouvillian skin effect,
which means that the eigenmodes of the Liouvillian are localized exponentially close to the boundary of the
system, and find that the timescale for the system to reach a steady state depends not only on the Liouvillian
gap Δ, but also on the localization length ξ of the eigenmodes. In particular, we show that the longest
relaxation time τ that is maximized over initial states and local observables is given by τ ∼ Δ−1ð1þ L=ξÞ
with L being the system size. This implies that the longest relaxation time can diverge for L → ∞ without
gap closing.
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Introduction.—Relaxation processes of quantum sys-
tems coupled to environments are among the most funda-
mental nonequilibrium phenomena in condensed matter
physics. Recent experimental advances in atomic, molecu-
lar, and optical (AMO) systems provide a highly control-
lable platform to study dissipative dynamics of various
quantum systems [1–6]. A crucial question here is what
determines the timescale for a given system to reach a
steady state. This problem is of great relevance to appli-
cations, because controlling the relaxation time of a
quantum system is a key to quantum control and informa-
tion processing [7–12].
The spectral gap plays a crucial role in characterizing the

relaxation time. In isolated quantum systems, the spectral
gap of a Hamiltonian determines the timescale of low-
energy excitations. The timescale diverges at a critical point
where the spectral gap closes [13]. In quantum dissipative
systems, the relaxation dynamics is characterized by the
eigenspectrum and eigenmodes of a Liouvillian that gov-
erns the time evolution of the density matrix. The
Liouvillian spectral gap (or the asymptotic decay rate) Δ
is defined as the smallest modulus of the real part of
nonzero eigenvalues. It has been postulated in many studies
that the longest relaxation timescale of a quantum dis-
sipative system is given by Δ−1 [14–16]. It is also known
that in dissipative phase transitions the closing of the
Liouvillian gap results in the divergence of the relaxation
timescale [17–20]. However, while the Liouvillian gap
characterizes asymptotic convergence to a steady state,
transient behavior cannot generally be inferred from the

gap alone. In fact, significant differences are known to arise
between the spectral gap and the mixing time, which are
called cutoff phenomena [21–25]. It is therefore natural to
ask whether there is a general relationship that links
transient relaxation behavior not only to the spectral gap,
but also to other properties of the Liouvillian.
In this Letter, we present a general relationship among the

relaxation time, the Liouvillian gap, and the spatial structure
of Liouvillian eigenmodes for quantum dissipative systems
in which some eigenmodes are exponentially localized near
a boundary of the system. In dissipative systems driven out
of equilibrium, localization phenomena of excitation modes
near boundaries have attracted much attention in the context
of the bulk-edge correspondence in non-Hermitian topo-
logical matter, known as the non-Hermitian skin effect
[26–35]. Here, we refer to the localization of Liouvillian
eigenmodes as the Liouvillian skin effect to emphasize that
our study concerns Liouvillian spectra. We derive a relation
between the maximal relaxation time, the Liouvillian gap,
and the localization length of eigenmodes [see Eq. (8)]. We
also propose a prototypical asymmetric-hopping model that
exhibits the Liouvillian skin effect.
Liouvillian skin effect and relaxation time.—Within the

Born-Markov approximation [36,37], the time evolution of
the density matrix ρ̂ is described by a master equation
[38,39]:

dρ̂
dt

¼ Lðρ̂Þ≔−i½Ĥ; ρ̂� þ
X

α

�
L̂αρ̂L̂

†
α −

1

2
fL̂†

αL̂α; ρ̂g
�
; ð1Þ
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where Ĥ is the Hamiltonian of the system, L̂α is the
Lindblad operator, ½Â; B̂�≡ Â B̂−B̂ Â, and fÂ; B̂g≡
Â B̂þB̂ Â. The Planck constant ℏ is set to unity throughout
this Letter. The Born-Markov approximation is known to
be justified for typical AMO systems such as trapped two-
level atoms with spontaneous emission and an optical
cavity with photon loss [36,37]. We denote the dimension
of the Hilbert space of the system as D. With the inner
product ðÂjB̂Þ ≔ Tr½Â†B̂�, a set of operators forms a
D2-dimensional Hilbert space. The right and left eigenm-
odes of the Liouvillian L are defined by

Lðρ̂Rj Þ ¼ λjρ̂
R
j ; L†ðρ̂Lj Þ ¼ λ�j ρ̂

L
j ðj ¼ 0; 1;…;D2 − 1Þ;

ð2Þ

where λj is the jth eigenvalue and L† is given by

L†ðρ̂Þ ¼ −i½ρ̂; Ĥ� þ
X

α

�
L̂†
αρ̂L̂α −

1

2
fL̂†

αL̂α; ρ̂g
�
: ð3Þ

The steady state ρ̂ss is the right eigenmode corresponding to
the zero eigenvalue, Lðρ̂ssÞ ¼ 0, and we set ρ̂R0 ¼ ρ̂ss.
Suppose that all eigenvalues are arranged in descending
order of their real parts: 0 ¼ Re½λ0� > Re½λ1� ≥ � � �
≥ Re½λD2−1�. Each eigenmode is normalized as kρ̂Rj ktr ¼
kρ̂Lj ktr ¼ 1, where kÂktr ≔ Tr½ðÂ†ÂÞ1=2�. The right and left
eigenmodes corresponding to different eigenvalues are
orthogonal to each other: ðρ̂Lj jρ̂Rk Þ ¼ 0ðλj ≠ λkÞ.
An arbitrary initial state ρ̂ini can be expanded as

ρ̂ini ¼ ρ̂ss þ
XD2−1

j¼1

cjρ̂Rj ; ð4Þ

where cj is written as

cj ¼
ðρ̂Lj jρ̂iniÞ
ðρ̂Lj jρ̂Rj Þ

: ð5Þ

The time evolution of the density matrix is given by

ρ̂ðtÞ ¼ ρ̂ss þ
XD2−1

j¼1

cjeλjtρ̂Rj : ð6Þ

The Liouvillian gap is defined by Δ ¼ jRe½λ1�j, which is
also called the asymptotic decay rate [20].
We define the relaxation time of the system. The

expectation value of a local observable Ô at time t and
that for the steady state are denoted as OðtÞ ¼ Tr½Ô ρ̂ðtÞ�
andOss ¼ Tr½Ôρ̂ss�, respectively. First, we define τ̃ðρ̂ini; ÔÞ
as the largest time t that satisfies jOðtÞ −Ossj ≥
e−1jOð0Þ −Ossj, where we assume that Oð0Þ ≠ Oss to

ensure the finiteness of τ̃. We also define the maximal
relaxation time τ by taking the supremum of τ̃ðρ̂ini; ÔÞ
over all ρ̂ini and Ô under the condition Oð0Þ ≠ Oss. If one
takes the initial state ρ̂ini ¼ ρ̂ss þ cjρ̂Rj þ c�jðρ̂Rj Þ† with
arbitrary jð≠ 0Þ, the relaxation time is given by
τ̃ðρ̂ini; ÔÞ ¼ Re½λj�−1. By maximizing τ̃ over ρ̂ini, it is
natural to expect

τ¼? 1

Δ
: ð7Þ

If Eq. (7) were true, the necessary and sufficient condition
for the divergence of the maximal relaxation time would be
closing of the Liouvillian gap.
We show that Eq. (7) does not hold if the system exhibits

the Liouvillian skin effect. For simplicity, we consider a
single-particle system in a one-dimensional space of length
L. Let jxi be the state in which the particle is located at
position x. We assume that the matrix element of the
first right (left) eigenmode is exponentially localized
near the right (left) boundary: jhxjρ̂R1 jyij ∼ e−ð2L−x−yÞ=ξ

[jhxjρ̂L1 jyij ∼ e−ðxþyÞ=ξ], where ξ is the localization length.
Then, the overlap between them is exponentially small:
ðρ̂L1 jρ̂R1 Þ ∼ e−OðL=ξÞ. Note that the numerator of Eq. (5) is
maximized and takes a value of Oð1Þ when ρ̂ini is localized
near the left boundary. Thus, the maximal jc1j over all
initial states is proportional to eOðL=ξÞ. It is reasonable to
state that the system has reached a steady state if jOðtÞ −
Ossj ≪ kÔkop for any local observable Ô, where k…kop
denotes the operator norm. From Eq. (6), we have
jPj>0 cje

λjtTr½Ôρ̂Rj �j ≪ kÔkop, where each jTr½Ôρ̂Rj �j is
bounded by kÔkop. Since in a later stage of relaxation the
slowest mode (j ¼ 1) is expected to be dominant in the sum
of the left-hand side, the condition for the system to reach
its steady state is given by jc1je−tΔ ≪ 1. Thus, the maximal
relaxation time τ is given by jc1je−τΔ ¼ e−1. From
jc1j ∼ eOðL=ξÞ, we find

τ ∼
1

Δ
þ L
ξΔ

: ð8Þ

This is the main result of this Letter. In the absence of the
skin effect, i.e., ξ ¼ L, Eq. (8) reduces to Eq. (7).
Equation (8) implies that, if the Liouvillian gap and the
localization length are independent of the system size, the
maximal relaxation time is proportional to the system size.
Defining the relaxation velocity by vR ≔ L=τ, Eq. (8) gives

vR ∼ ξΔ ð9Þ

for L → ∞. It should be noted that the derivation of Eq. (8)
does not rely on the details of the Liouvillian superoperator,
as long as its eigenmodes exhibit the skin effect. While we
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here focus on the Lindblad master equation, the same
argument can also be applied to other types of master
equations, such as the Redfield equation.
We here note the relationship between the relaxation

time τ defined above and the mixing time in Markov
processes [21–25]. The maximal distance to the steady state
over initial states is given by dðtÞ ¼ maxρ̂inikρ̂ðtÞ − ρ̂ssktr.
The mixing time τmix is then defined as the time for dðtÞ to
reach some small value ϵ. In general, τmix provides an upper
bound on the relaxation time of observables. When ρ̂ss is
localized, maxρ̂ini τ̃ðρ̂ini; ÔÞ attains τmix for local observ-
ables Ô with support in the localized region of ρ̂ss, and,
thus, the maximal relaxation time τ over all local observ-
ables coincides with τmix. Therefore, Eq. (8) is also valid for
the mixing time.
Prototypical model.—Here, we present a prototypi-

cal model that shows the Liouvillian skin effect.
The Hamiltonian of the system is given by Ĥ ¼
−J

P
L
l¼1ðb̂†lþ1b̂l þ b̂†l b̂lþ1Þ, where b̂†l and b̂l are the cre-

ation and annihilation operators, respectively, of a boson at
site l, which satisfy ½b̂l; b̂†m� ¼ δlm and ½b̂l; b̂m� ¼
½b̂†l ; b̂†m� ¼ 0, and J represents the transfer amplitude. We
consider Lindblad operators L̂R;l ¼ ffiffiffiffiffi

γR
p

b̂†lþ1b̂l and L̂L;l ¼ffiffiffiffiffi
γL

p
b̂†l−1b̂l [40,41], which describe stochastic hopping to

the right and left neighboring sites with rates γR and γL,
respectively. The index α in Eq. (1) includes R or L, and site
index l ¼ 1; 2;…; L. Wewill discuss both cases of the open
boundary condition (OBC) and the periodic boundary
condition (PBC). Given the state jli in which the particle
is located at site l, the set of vectors fjligl¼1;…;L forms an
orthonormal basis of the Hilbert space. The asymmetric
stochastic hopping can be implemented with ultracold
atoms in an optical lattice by laser-assisted hopping
with spontaneous emission [42–47]. While such an exper-
imental setup also gives rise to an on-site dephasing
L̂d;l ¼ ffiffiffiffiffi

γd
p

b̂†l b̂l, this additional dissipation does not affect
the qualitative behaviors discussed below [47].
Relaxation time.—Suppose that the initial state is local-

ized at a point with distance d from the region in which the
steady state is localized. Since the total particle number
N̂ ¼ P

L
l¼1 b̂

†
l b̂l is conserved, the relaxation toward the

steady state must be accompanied by the transport of
particles. In quantum dissipative systems with local inter-
actions, there exists an upper bound on the speed at which
information can propagate, i.e., the Lieb-Robinson bound
[52,53]. Thus, it takes a time at least proportional to d for
the system to reach its steady state. In other words, the
maximal relaxation time diverges in the limit of infinite
system size.
Let us confirm this fact by numerically solving the

master equation under the OBC. Figure 1(a) shows the time
evolution of the density profile nl ¼ Tr½ρ̂b̂†l b̂l� ¼ hljρ̂jli
from an initial state ρ̂ini ¼ j1ih1j. For γR > γL, the particle

is transported from left to right and accumulated at the
right boundary. Figure 1(b) shows τ̃ determined from the
condition nss;L − nLðτ̃Þ ¼ e−1nss;L, where nss;l is the
density profile of the steady state. For γR ¼ γL, τ̃ is
proportional to L2, reflecting the diffusive relaxation to
the uniform steady state. In contrast, for γR > γL, τ̃ is
asymptotically proportional to L. If the relation (7) were
correct, the gap should always close.
Liouvillian spectrum.—The operator space is spanned by

fjlihmjgl;m¼1;…;L. First, we consider the case of J ¼ 0,
where the action of L is closed in the diagonal subspace
spanned by fjlihljgl¼1;…;L and in the off-diagonal subspace
spanned by fjlihmjgl;m¼1;…;L;l≠m [47]. If we interpret jlihlj
as the state in which a particle sits at site l, then L restricted
to the diagonal subspace is equivalent to a non-Hermitian
tight-binding Hamiltonian

ĤPBC ¼
XL

l¼1

ðγRĉ†lþ1ĉl þ γLĉ
†
l ĉlþ1Þ ð10Þ

for the PBC and

ĤOBC ¼
XL−1

l¼1

ðγRĉ†lþ1ĉl þ γLĉ
†
l ĉlþ1Þ þ γLĉ

†
1ĉ1 þ γRĉ

†
LĉL

ð11Þ

for the OBC, where ĉ†l and ĉl are the creation and
annihilation operators, respectively, of the virtual particle
and we have omitted a constant energy shift −γR − γL.
Such a tight-binding model with asymmetric hopping is
known as the Hatano-Nelson model [27,54–56].
For the case of the PBC, a right eigenmode of ĤPBC is

given by a plane wave ψk;l ∝ eikl with k ¼ 2πn=L
ðn ¼ −L=2þ 1;…; L=2Þ, and its eigenvalue reads

λðPBCÞk ¼ γRe−ik þ γLeik − γR − γL; ð12Þ

(a) (b)

FIG. 1. (a) Time evolution of the density profile nl with
hopping parameters J ¼ γR ¼ 1 and γL ¼ 0.5 and system size
L ¼ 30. (b) Relaxation time τ̃with hopping parameters J ¼ γR ¼
1 and γL ¼ 1, 0.8, 0.6, 0.4, 0.2 from top to bottom. The abscissa
and ordinate are shown in log scales. The two straight lines
represent the L1 and L2 scalings.
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where we have restored the constant shift −γR − γL. From
Eq. (12), we have Δ ∼ L−2.
Next, we consider the eigenmodes of ĤOBC. We

introduce an imaginary gauge transformation V̂ ¼
exp½− ln r

P
l lĉ

†
l ĉl�, which gives V̂−1ĉ†l V̂ ¼ rlĉ†l and

V̂−1ĉlV̂ ¼ r−lĉl [54–56]. When r ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
γL=γR

p
, the trans-

formed Hamiltonian Ĥ0
OBC ≔ V̂−1ĤOBCV̂ is given by

replacing γR and γL in the hopping term γRĉ
†
lþ1ĉl þ

γLĉ
†
l ĉlþ1 in Eq. (11) with

ffiffiffiffiffiffiffiffiffiffi
γRγL

p
. Note that the eigenspec-

trum of ĤOBC is real, because Ĥ0
OBC is Hermitian. Let ψ l

and ψ 0
l be a right eigenmode of ĤOBC and that of Ĥ0

OBC
sharing the same eigenvalue. The right eigenmodes of
Ĥ0

OBC include a bound state ψ 0
BS;l ∝ ðγR=γLÞl=2 and (L − 1)

plane-wave states ψ 0
k;l ¼ c1eikl þ c2e−ikl with k ¼ nπ=L

ðn ¼ 1;…; L − 1Þ [47]. The bound state corresponds to the
steady state. The eigenvalues for the plane-wave states are
given by

λðOBCÞk ¼ 2
ffiffiffiffiffiffiffiffiffiffi
γRγL

p
cos k − γR − γL: ð13Þ

The eigenmode of the original Hamiltonian ĤOBC is given
by ψ l ¼ ðγR=γLÞl=2ψ 0

l. When γR > γL, all right eigenmodes
are exponentially localized near the right boundary. From
Eq. (13), the gap is given by

Δ ¼ γR þ γL − 2
ffiffiffiffiffiffiffiffiffiffi
γRγL

p ð14Þ

in the L → ∞ limit. Note that, for γR ¼ γL, the gap closes
as L−2. Thus, in sharp contrast to the case of the PBC, the
Liouvillian spectrum under the OBC has a nonvanishing
gap for γR ≠ γL. Such an extreme sensitivity of the
eigenspectrum to the boundary conditions is a special
character of quantum dissipative systems driven out of
equilibrium and reminiscent of a similar effect seen in the
non-Hermitian systems [26–35]. The left eigenmodes of
ĤOBC can be obtained by exchanging γR and γL in the right
eigenmodes. Thus, for γR > γL, the left eigenmodes are
localized near the left boundary.
The eigenvalues given by Eqs. (12) and (13) are those

of L that are restricted to the diagonal subspace. In addition
to them, there are ðL2 − LÞ eigenvalues belonging to
the off-diagonal subspace. For the PBC, it is given by
λ ¼ −γR − γL. For the OBC, there are four eigenvalues
λ¼−γR−γL, −γR−γL=2, −γR=2−γL, and −γR=2−γL=2,
whose degeneracies are ðL − 2ÞðL − 3Þ, 2ðL − 2Þ,
2ðL − 2Þ, and 2, respectively.
For J ≠ 0, the eigenvalue problem of the Liouvillian

cannot be solved exactly, and we study its eigenspectrum
using numerical diagonalization. Figure 2 shows Δ as a
function of L. For the PBC case (a), Δ vanishes as L−2 for
arbitrary hopping parameters. For the OBC case (b), while
Δ ∼ L−2 for γR ¼ γL, Δ approaches a nonzero value for
γR ≠ γL [16].

Next, we show that the eigenmodes exhibit the
Liouvillian skin effect for nonzero J. Figures 3(a) and
3(b) show fλjgj¼0;…;L2−1 for the OBC. The eigenspectrum
is composed of two groups of eigenvalues with and without
imaginary parts. The real spectrum stems from the eigen-
values given by Eq. (13) at J ¼ 0. One can clearly see
two clusters of complex eigenvalues around Re½λ� ¼ −γR −
γL ¼ −1.2 and Re½λ� ¼ −γR=2 − γL ¼ −0.7, which origi-
nate from the highly degenerated eigenvalues at J ¼ 0.
Figure 3(c) shows the modulus of ρRj;lm ¼ hljρ̂Rj jmi for the
eigenvalues indicated by arrows (i)–(iv) in Fig. 3(a). For the
real eigenvalues such as (i) and (iv), ρRj;lm is localized
exponentially near the right boundary. In contrast, for the
complex eigenvalues such as (ii) and (iii), ρRj;lm is delocal-
ized for one or both of l and m. The partial skin effect
observed in (ii) can be understood from the fact that ρ̂Rj
is a superposition of jlihmj where either l or m belongs
to the right boundary, which is the eigenmode with
λ ¼ −γR=2 − γL at J ¼ 0. The eigenmodes with the com-
plex eigenvalues are irrelevant to the slowing down of
relaxation, because they do not exhibit the Liouvillian skin
effect.

(a) (b)

FIG. 2. Liouvillian gap Δ as a function of the system size L for
the PBC (a) and the OBC (b) with J ¼ γR ¼ 1 and γL ¼ 0.2, 0.4,
0.6, 0.8, and 1. The abscissa and ordinate are shown in log scales.
The straight solid lines represent the L−2 scaling.

(a)

(c)

(b)

FIG. 3. (a), (b) Liouvillian eigenspectrum for the OBC with
γR ¼ 1, γL ¼ 0.2, and J ¼ 0.1 (a) and J ¼ 0.3 (b). The system
size is L ¼ 20. (c) Color plots of jρRj;lmj corresponding to the
eigenvalues indicated by arrows (i)–(iv) in (a).
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Let us confirm Eq. (9) for the prototypical model. We
assume that ξ is of the same order of magnitude as the
localization length of the steady state. By using the density
profile nss;l of the steady state, ξ is estimated to be
ξ ¼ 1=nss;L. Figure 4 shows vR and ξΔ for several
parameters. As the system size increases, the plots of vR
versus ξΔ converge to points on a single line vR ¼ aξΔ
with a ≃ 2.7.
To estimate the relaxation time in Figs. 1 and 4, we have

focused on the diagonal elements ρll ¼ hljρ̂jli of the
density matrix. It is also intriguing to consider the relax-
ation of the off-diagonal elements ρlm ¼ hljρ̂jmiðl ≠ mÞ,
because they provide a measure of quantum coherence. For
J ¼ 0, since ρ̂R1 does not contain the off-diagonal elements,
ρlm decays at a constant rate and Eq. (8) does not hold. In
contrast, for J ≠ 0, the relaxation time of ρlm diverges with
the system size [47], since the eigenmodes exhibiting the
skin effect have nonzero off-diagonal elements [see
(i) in Fig. 3].
Generalizations.—The prototypical model can be gen-

eralized to an N (< L)-particle system with the hard-core
condition ðb̂†l Þ2 ¼ 0. For J ¼ 0, the model is identical to a
classical Markov process known as the asymmetric simple
exclusion process (ASEP) [57]. For the OBC, it has been
proven that the transition matrix of the ASEP has a nonzero
spectral gap in the thermodynamic limit [58]. The density
profile nl of the steady state is given by nL−N−l ∝ e−l=ξ and
nL−Nþl ∝ 1 − e−l=ξ when γR > γL. The existence of such an
exponential tail in the density profile suggests that the
overlap between the right and left eigenmodes should be
exponentially small. Thus, Eq. (8) should hold for J ¼ 0. It
merits further study to investigate the validity of Eq. (8) for
the many-body case with nonzero J.
The non-Hermitian skin effects in higher-dimensional

systems are currently under active investigation [33–35].
Our results can also be extended to higher-dimensional

cases. For example, a possible manifestation of the skin
effect in a rectangular-shaped two-dimensional system is
the localization of the right eigenmodes at one of the four
edges of the boundary. If the left eigenmodes are localized
at the opposite side, Eq. (8) holds by replacing the one-
dimensional system size L by the length perpendicular to
the edges at which the eigenmodes are localized.
Understanding what factors determine the location of the
eigenmode localization in higher-dimensional systems
merits further study.
Finally, we remark on the non-Markovian effect in the

dynamics of open quantum systems. As in the Markovian
cases, one can also perform the spectral decomposition of
the propagator corresponding to the temporally nonlocal
master equation [59]. A major difference from the
Markovian case is that the eigenmodes and the spectrum
explicitly depend on time. If these time-dependent eigenm-
odes are always localized near the boundary, we can expect
the slowing down of relaxation processes without gap
closing.
Conclusions.—We have shown that the longest relaxa-

tion time of a quantum dissipative system depends not only
on the Liouvillian gap, but also on the localization length of
the eigenmodes. This behavior is a nonequilibrium effect
unique to dissipative systems driven far from thermal
equilibrium. In fact, it can be shown that, if the
Liouvillian with a spatially uniform Hamiltonian satisfies
the detailed balance condition, the right and left eigenm-
odes cannot be localized near opposite boundaries of the
system [47]. It is worthwhile to study other mechanisms
that lead to a small overlap between the right and left
eigenmodes [22–25,60].
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