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We introduce a general method which converts, in a unified way, any form of quantum contextuality,
including any form of state-dependent contextuality, into a quantum violation of a bipartite Bell inequality.
As an example, we apply the method to a quantum violation of the Klyachko-Can-Binicioğlu-Shumovsky
inequality.
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Introduction.—Nonlocal games [1,2] provide an intuitive
understanding of where the advantage of quantum resour-
ces lies and a framework, used in computer science [3], to
analyze quantum protocols. Contextuality is known to be a
crucial resource for some forms of computation with
quantum speed up [4–6]. However, although some forms
of contextuality can be converted into nonlocal games,
there is no universal method for converting any form of
contextuality into a nonlocal game. The aim of this Letter is
to introduce a unified method that achieves this task.
The research on how contextuality can be converted into

nonlocality started with the works of Stairs [7] and
Heywood and Redhead [8], extending the proofs of the
Kochen-Specker (KS) theorem [9] to bipartite scenarios
with entanglement and has evolved in many ways in
connection to extensions of the KS theorem [10,11],
Bell inequalities [12–14], and nonlocal games [15–20].
So far, the forms of contextuality that can be converted

into nonlocality are (i) Those forms of state-dependent
contextuality (SD-C) corresponding to scenarios whose
measurements can be distributed between two or more
parties in such a way that each party has at least two
incompatible measurements. (ii) Those that are produced
by KS sets [9] (i.e., sets of rank-one projectors which do not
admit a “KS assignment,” i.e., an assignment of 0 or 1
satisfying that two orthogonal projectors cannot both have
assigned 1, and for every set of mutually orthogonal
projectors summing the identity, one of them must be
assigned 1) or by proofs of the KS theorem (e.g., [21,22])
that can be reduced to KS sets [23,24]. For methods of
conversion, see, e.g., [1,14]. (iii) Those produced by some
particular state-independent contextuality (SI-C) sets [25]
(i.e., sets of projectors which produce noncontextual
behaviors for any initial state) that are not KS sets. For
methods of conversion, see [26]. (iv) In addition, some
constraint satisfaction problems and local no-hidden-
variables proofs can be converted into nonlocal games
[17–20]. In each case, “convert” may mean a differ-
ent thing.

Forms of contextuality that we do not know how to
convert into nonlocality are those produced by sequentially
measuring noncomposite systems initially prepared in
specific states in contextuality scenarios which cannot
be embedded in Bell scenarios. A particularly relevant
example is the quantum violation of the Klyachko-
Can-Binicioğlu-Shumovsky (KCBS) inequality [27] with
single qutrits. This is arguably the most fundamental form
of quantum SD-C produced by noncomposite systems, as
the KCBS inequality is the only nontrivial tight non-
contextuality inequality [28] in the scenario with the
smallest number of measurements in which qutrits produce
contextuality (qutrits are the quantum systems of smallest
dimension that produce contextuality [9]), and because it
plays a crucial role for understanding quantum contextual-
ity [29–31].
The aim of this Letter is to provide a general unified

method capable of converting any form of SD-C or SI-C
into bipartite nonlocality. The philosophy behind the
method is guided by the recognition of the singular role
of SI-C, as pointed out in, e.g., [32] (“we argue that a
primitive entity of contextuality should embrace state-
independence”). The method takes any set of measure-
ments that provides SD-C and identifies the minimal
extension of it that provides SI-C and then converts the
SI-C into bipartite nonlocality preserving the gap between
quantum and noncontextual theories in the SI-C (which
becomes the gap between quantum and local theories).
First, we describe the method, which has three steps.

Then, we apply the method to a quantum violation of the
KCBS inequality. Finally, we provide an intuitive
explanation of how it works and discuss its virtues and
limitations.
Method.—An ideal measurement of an observable A is a

measurement of A that yields the same outcome when
repeated and does not disturb any compatible (i.e., jointly
measurable) observable. A context is a set of ideal
measurements of compatible observables. A scenario is
characterized by a number of measurements, their
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outcomes, and relations of compatibility [31]. In qua-
ntum theory, every ideal measurement is represented
by the spectral projectors of a self-adjoint operator,
and compatible observables correspond to commuting
operators.
A behavior for a scenario (i.e., a set of probability

distributions for each of its contexts) is contextual if
the probability distributions for each context cannot be
obtained as the marginals of a global probability
distribution on all observables. Otherwise, the behavior
is noncontextual. Contextuality is detected by the
violation of noncontextuality inequalities whose bounds
are derived solely from the assumption of outcome non-
contextuality [25,27,33–35]. Any quantum contextual
behavior can be produced by a set of rank-one projectors
S ¼ fΠ1;…;Πng acting on a quantum state jψi in a
Hilbert space of dimension d ≥ 3 [29]. Given S,
contexts are subsets of S containing mutually commuting
projectors.
Step 1: A SI-C set is critical if by removing any of its

elements the resulting set is not a SI-C set. A KS set is
critical [36] if by removing any of its elements the resulting
set is not a KS set. Here we show that every set S producing
SD-C can be extended into a critical SI-C set S00 ¼ S ∪ S0.
To prove this, we need the following result [37,38]. In
d ≥ 3, given any two nonorthogonal rank-one projectors
ΠA and ΠB, there is a set of projectors E such that, for any
KS assignment f, fðΠAÞ þ fðΠBÞ ≤ 1. The set ΠA ∪ E ∪
ΠB is called a true-implies-false set (TIFS) [39], defi-
nite prediction set [37], 01-gadget [38], or Hardy-like
proof [40].
The construction of a critical SI-C set containing S is as

follows. LetG be the graph of orthogonality of S. Let N be
the minimum number of disjoint bases that cover all the
vertices of G. If S allows for SD-C, then N ≥ 3 [29]. If
N < dþ 1, then we add disjoint bases until the total of
number of disjoint bases is N þ 1. Then, we use the
construction shown, for d ¼ 3, in Fig. 1(a) and, for d ¼ 4,
in Fig. 1(d), and which works similarly for any d ≥ 5,
based on creating TIFSs between some specific
nodes. If N > dþ 1, then we use the construction shown,
for different combinations of d and N, in Figs. 1(b), 1(c),
or 1(e). In all cases, the resulting set is a
critical KS set in dimension d for the reasons explained
in Fig. 1. If one removes any of the nodes in each of the
constructions in Fig. 1, then the resulting set admits a KS
noncontextual assignment. Some SI-C sets are not KS sets
(e.g., [25,41,42]). Hence, the resulting critical KS set
could, in principle, not be a critical SI-C set. However, this
problem can be solved by suitably choosing the extra
nodes used for the TIFSs in Fig. 1 [43].
A minimal critical SI-C set is a critical SI-C set of

minimum cardinality. The previous proof guarantees that
critical SI-C sets containing S exist. However, the method
used in the proof does not guarantee that the resulting

critical SI-C set is minimal. To obtain a minimal critical SI-
C set S00 from S, we can use the following results. Let us call
G the graph of orthogonality of S00, and let d be the
dimension of the Hilbert space. Necessary conditions for S00
to be a SI-C set are that the chromatic number of G satisfies
χðGÞ > d [55] and that the fractional chromatic number
satisfies χfðGÞ > d [56,57]. These conditions allow us to
identify candidates to be minimal critical SI-C sets con-
taining any given SD-C set. Then, we can use the necessary
and sufficient condition for being a SI-C set [57] to check
whether or not they are SI-C sets. This condition states that
a set of rank-one projectors S00 ¼ fΠi;…;Πng is a SI-C set
if and only if there are nonnegative numbers w ¼
ðw1;…; wnÞ and a number 0 ≤ y < 1 such that

P
j∈I wj ≤

y for all I , where I is any independent set of G, andP
i wiΠi ≥ 1.
In practice, finding a critical SI-C set containing S is not

a problem. However, proving that it has minimal cardinality
may be difficult [43]. See [40,68] for examples of such
proofs [43]. Nevertheless, minimality is only required for
elegance; to connect SD-C to nonlocality, what matters is
the criticality of the SI-C set.
Step 2: As pointed out in [57], the weights w needed to

guarantee that S00 is a SI-C set generate a noncontextuality
inequality violated by any quantum state. The results in
[29,54] allow us to express this inequality as

(a) (b) (c) (d) (e)

FIG. 1. Every node represents a rank-one projector. A con-
tinuous vertical line between d ≥ 3 nodes indicates that they are
mutually orthogonal. Hence, in dimension d, in any KS assign-
ment, one of them has to be assigned 1. A dashed line between
two nodes indicates that there is a TIFS between (and including)
them. Hence, in any KS assignment, both of them cannot be
assigned 1. Construction to obtain a critical KS set in dimension
d ≥ 3 from N ≥ dþ 1 disjoint bases: (a) For d ¼ 3 and
N ¼ dþ 1. (b) For d ¼ 3 and N ¼ dþ 2. (c) For d ¼ 3 and
N ¼ dþ 3. (d) For d ¼ 4 and N ¼ dþ 1. (e) For d ¼ 4
and N ¼ dþ 2. The construction works similarly for any d ≥
3 and N ≥ dþ 1. In all cases, it is impossible to assign to the
depicted nodes the values 0 or 1 satisfying that one of the d nodes
in each continuous vertical line must be 1, while nodes connected
by a dashed line cannot both be 1. However, such an assignment
is possible whenever we remove any of the depicted nodes.
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X

i∈VðGÞ
wiPðΠi ¼ 1Þ −

X

ði;jÞ∈EðGÞ
maxðwi; wjÞPðΠi ¼ 1;Πj ¼ 1Þ ≤

NCHV
αðG; wÞ; ð1Þ

where PðΠi ¼ 1;Πj ¼ 1Þ is the probability of obtaining
outcome 1 in the measurement associated to Πi (which
has possible outcomes 1 and 0) and also in the meas-
urement associated to Πj, VðGÞ, and EðGÞ are the sets of
vertices and edges of G, respectively, αðG; wÞ is the
independence number of ðG; wÞ [i.e., the graph in
which weight wi is assigned to each i ∈ VðGÞ], and
NCHV stands for noncontextual hidden-variable
theories. The independence number of a (weighted)
graph is the cardinality of its largest set of vertices
(taking their weights into account) such that no two are
adjacent.
Step 3: This step has two ingredients. One is the

following method, introduced in [7,8] and used extensively
since then to embed a KS set in a bipartite Bell scenario. In

each run of the experiment, we prepare a pair of particles in
the two-qudit maximally entangled state

jΨi ¼ 1ffiffiffi
d

p
Xd−1

k¼0

jkki; ð2Þ

distribute one particle to Alice and the other to Bob, and
allow Alice (Bob) to freely and independently choose and
perform one measurement from S00 (from the set obtained
by taking the complex conjugate of the elements in S00).
Here, we apply this embedding not only to KS sets but to
any SI-C set.
The second ingredient is the observation that the behav-

ior produced by this state and these measurements violate
the following Bell inequality:

X

i∈VðGÞ
wiPðΠA

i ¼ 1;ΠB
i ¼ 1Þ −

X

ði;jÞ∈EðGÞ

maxðwi; wjÞ
2

½PðΠA
i ¼ 1;ΠB

j ¼ 1Þ þ PðΠA
j ¼ 1;ΠB

i ¼ 1Þ� ≤LHVαðG; wÞ; ð3Þ

where PðΠA
i ¼ 1;ΠB

j ¼ 1Þ is the probability that Alice
obtains outcome 1 for measurement Πi on her particle and
Bob obtains outcome 1 for measurement Πj on his particle.
LHV stands for local hidden-variable theories.
That (3) is a Bell inequality follows from the

fact that, for LHV theories, the maximum of the left-
hand side of (3) is always attained by a deterministic
assignment for the outcomes of the elements of S00 in
Alice’s particle and a deterministic assignment for
the outcomes of the elements of the complex conjugate
of S00 in Bob’s particle. To maximize the left-hand side of
(3), we need to maximize (taking into account the
weights) the number of projectors Πi to which outcome
1 is assigned both in Alice’s and Bob’s particles,
while minimizing the number of adjacent Πj to which
outcome 1 is assigned, which is exactly the definition
of independence number of a (weighted) graph ðG; wÞ.
We can translate this violation into a nonlocal game
with quantum advantage following the method in [2]
(Sec. II.B4).
The interest of Bell inequality (3) comes from the

following observations. Noncontextuality inequalities of
the form (1) are in one-to-one correspondence with Bell
inequalities of the form (3). The noncontextual bound in (1)
is equal to the local bound in (3). The quantum violation of
(1) for the maximally mixed state using S00 is equal to the
quantum violation of the Bell inequality (3) for the
maximally entangled state (2) and using S00 in Alice’s side

and the complex conjugate of S00 in Bob’s side. Moreover, if
S00 admits a weight w for which the left-hand side of (1) is
represented in quantum theory by λ1 with λ > αðG; wÞ (as
is the case in many critical SI-C sets, e.g., [25,58,78]), then,
all quantum states violate inequality (1) by the same value,
and this violation coincides with that of the Bell inequality
(3) for state (2).
Overall, step 3 is an interesting result by itself, as it applies

to any SI-C set (and not only to sets that can be reduced to
KS sets, as [1,14]) and preserves the gap between quantum
and noncontextual theories (while previous methods
[1,14,26] do not).
Converting KCBS contextuality into nonlocality.—Here,

we apply the method described above to a set of
projectors [74,75] leading to a violation of the KCBS
inequality [27]. The method works for any form of
contextuality. The example has been chosen for its
relevance and simplicity, as we can use a previous result
[68] to identify S00.
Consider S ¼ fΠ1;…;Π5g, where Πi ¼ jviihvij, with

jv1i ¼ ð1; 0; 0ÞT; ð4aÞ

jv2i ¼
1ffiffiffi
2

p ð0; 1; 1ÞT; ð4bÞ

jv3i ¼
1ffiffiffi
3

p ð1;−1; 1ÞT; ð4cÞ
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jv4i ¼
1ffiffiffi
2

p ð1; 1; 0ÞT; ð4dÞ

jv5i ¼ ð0; 0; 1ÞT: ð4eÞ

These measurements violate the KCBS inequality [27],
which can be written [54] as

X

i∈VðGÞ
PðΠi ¼ 1Þ −

X

ði;jÞ∈EðGÞ
PðΠi ¼ 1;Πj ¼ 1Þ ≤ αðGÞ;

ð5Þ

where G is the graph in Fig. 2(a), for which αðGÞ ¼ 2. For
example [74,75], the state jψi ¼ ð1= ffiffiffi

3
p Þð1; 1; 1ÞT gives

2þ 1
9
, which violates inequality (5).

Step 1: The smallest critical SI-C set S00 that contains S is
the Yu-Oh set [25]. This follows from the proof in [57] that
the Yu-Oh set is the SI-C set of rank-1 projectors with
minimum cardinality. Therefore, S0 ¼ fΠ6;…;Π13g,
where Πi ¼ jviihvij, with

jv6i ¼
1ffiffiffi
2

p ð0; 1;−1ÞT; ð6aÞ

jv7i ¼
1ffiffiffi
3

p ð1; 1; 1ÞT; ð6bÞ

jv8i ¼
1ffiffiffi
2

p ð1;−1; 0ÞT; ð6cÞ

jv9i ¼
1ffiffiffi
2

p ð1; 0;−1ÞT; ð6dÞ

jv10i ¼
1ffiffiffi
2

p ð1; 0; 1ÞT; ð6eÞ

jv11i ¼ ð0; 1; 0ÞT; ð6fÞ

jv12i ¼
1ffiffiffi
3

p ð−1; 1; 1ÞT; ð6gÞ

jv13i ¼
1ffiffiffi
3

p ð1; 1;−1ÞT: ð6hÞ

The graph G that represents the relations of orthogonality
between the projectors S00 ¼ fΠ1;…;Π13g is shown in
Fig. 2(b).
Step 2: The set of weights fw1;…; w13g leading to the

largest gap between quantum and noncontextual theories
for inequality (1) for S00 is wi ¼ 2 for i ¼ 3, 7, 12, 13, and
wi ¼ 3, otherwise. See Fig. 2(c). This follows from the
observation that, in this case, the noncontextuality inequal-
ity (1) has αðG; wÞ ¼ 11, while it is violated by any
quantum state of dimension d ¼ 3, since, for any initial
state (including the maximally mixed state), the left-hand
side of (1) is 1

3
ð2 × 4þ 3 × 9Þ ¼ 11þ 2

3
.

Step 3: Distributing pairs of particles in the maximally
entangled state (2), with d ¼ 3, between Alice and Bob and
allowing each of them to perform a randomly chosen
spacelike separated measurement from S00 (in this case, S00
and its complex conjugate are equal), we obtain a nonlocal
behavior as the local bound of the Bell inequality (3) is
αðG; wÞ ¼ 11, while the value for the left-hand side of (3)
is, again, 11þ 2

3
.

Explanation, virtues, and limitations.—Here, we give
some intuition of how themethodworks. The set of states (in
dimension d ≥ 3) that yield contextual behaviors grows as
the set of measurements grows from S to S00. For example,
while the state jψ 0i ¼ ð1= ffiffiffi

3
p Þð1;−1; 1ÞT does not violate

inequality (5), it violates a similar noncontextuality inequal-
ity replacing S by fΠ1;…;Π9g [79]. When all the mea-
surements in S00 are used, then even the maximally mixed
state produces contextuality and weights can be adjusted
[57] to produce equal state-independent violation of a
noncontextuality inequality for all states [25,33–35].
The Bell inequality (3) follows from the SI-C inequality

(1) by noticing that (1) can be tested in experiments
consisting of two sequential measurements on a maximally
mixed state. We can assume that each of these measure-
ments is performed by a different party. Sometimes Alice is
the first to measure and Bob the second, and sometimes
vice versa. Sometimes both parties measure the same Πi,
sometimes they measure different but compatible projec-
tors. This view leads to the Bell inequality (3) which shares
the classical bound and it is also violated by the same
amount when preparing pairs in state (2) and giving one
particle to Alice and the other to Bob, as, in this case,
Alice’s and Bob’s outcomes are perfectly correlated, and
Alice’s and Bob’s local states are maximally mixed states.

FIG. 2. (a) Five-vertex graph G that represents the relations of
orthogonality between the projectors S ¼ fΠ1;…;Π5g needed to
violate the KCBS inequality (5). Projector Πi is represented by
vertex i, mutually orthogonal projectors are represented by
adjacent vertices. (b) Extended 13-vertex graph G representing
the relations of orthogonality between elements of the smallest
SI-C set S00 ¼ fΠ1;…;Π13g that contains S. (c) Vertex-weighted
graph ðG; wÞ with the weights that produce the largest SI-C.
Vertices in white have weight 2 and vertices in black have weight
3. These are the weights used in the SI-C inequality (1) and the
Bell inequality (3).
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Virtues: (I) While inequalities (1) and (5) are non-
contextuality inequalities that might only be testable by
performing sequential nondemolition measurements on
single systems [80–82], inequality (3) is a Bell inequality
that can be tested by performing local measurements on
spatially separated systems and can be converted into a
nonlocal game. (II) The “compatibility” or “sharpness”
loophole [83] in contextuality experiments with sequential
measurements vanishes in the Bell test, as, there, measure-
ments do not need to be ideal (or sharp) [31] and
observables on different particles are automatically com-
patible. (III) The gap between quantum and local theories
for the Bell inequality (3) is the same as the gap between
quantum and noncontextual theories for the SI-C inequality
(1), and both are produced using the same measurements.
(IV) The violation of the Bell inequality (3) by the
measurements in S00 and state (2) vanishes whenever we
remove from S00 any element of S. This follows from the
fact that, in that case, inequality (1) is not violated by the
maximally mixed state. Therefore, the maximally entangled
state (2) fails to violate the Bell inequality (3), as the local
states of Alice and Bob are maximally mixed. This property
follows from the fact that S00 is a critical SI-C set. (V) There
is no “contextuality-nonlocality tradeoff” [84,85]. The
quantum violations of the SI-C inequality (1) and the
Bell inequality (3) can be tested simultaneously in the same
experiment. According to quantum theory, the experiment
would give (equal) violations of both inequalities. The
violation of (1) can be observed by allowing one of the
parties, e.g., Alice, to perform sequential measurements.
The violation of (3) can be observed by considering the first
(or second) measurements of Alice and the (only) mea-
surements of Bob. It would be interesting to observe these
simultaneous violations in an actual experiment.
Limitations: Except for the case S ¼ S00, the nonlocal

behavior resulting from the application of this method does
not have the same gap between quantum and local theories
than the gap between quantum and noncontextual theories
of the original SD-C behavior. Arguably, no method exists
that preserves this gap for all forms of state-dependent
contextuality.
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