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In passive fluid-fluid phase separation, a single interfacial tension sets both the capillary fluctuations of
the interface and the rate of Ostwald ripening. We show that these phenomena are governed by two different
tensions in active systems, and compute the capillary tension σcw which sets the relaxation rate of interfacial
fluctuations in accordance with capillary wave theory. We discover that strong enough activity can cause
negative σcw. In this regime, depending on the global composition, the system self-organizes, either into a
microphase-separated state in which coalescence is highly inhibited, or into an “active foam” state. Our
results are obtained for Active Model Bþ, a minimal continuum model which, although generic, admits
significant analytical progress.
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Active particles extract energy from the environment
and dissipate it to self-propel [1,2]. Among their notable
self-organizing features is phase separation into dense
(liquid) and dilute (vapor) regions, even for purely repul-
sive particles [3–5]. Although generically a far-from-
equilibrium effect, active phase separation was first
described via an approximate mapping onto equilibrium
liquid-vapor phase separation [3,4], leading to early specu-
lation that time reversal symmetry might be restored
macroscopically in steady state [3,6–11]. Indeed, activity
is an irrelevant perturbation near the liquid-vapor critical
point, albeit without causing emergent reversibility [12].
Recently it has become clear, however, that bulk phase

separation in active systems displays strongly nonequili-
brium features. Bubbly phase separation [13] was evi-
denced in simulations of repulsive self-propelled particles
[14,15]: here large liquid droplets contain a population of
mesoscopic vapor bubbles that are continuously created in
the bulk, coarsen, and are ejected into the exterior vapor,
creating a circulating phase-space current in the steady
state. Microphase separation of vapor bubbles [15,16] has
been further observed numerically, alongside a similar
phase of finite dense clusters, often found in experiments
with self-propelled colloids [17,18] and bacteria [19].
Recently, even more intriguing forms of phase separation
have been reported in an active system of nematodes,
comprising a phase where dense filaments continuously
break up and reconnect [20].
Much understanding of active phase separation has been

gained from continuum field theories. In the simplest
setting [13,21,22], these only retain the evolution of the
density field ϕ, while hydrodynamic [23,24] or polar [25]

fields can be added if the phenomenology requires. Their
construction, via conservation laws and symmetry argu-
ments, follows a path first introduced with Model B for
passive phase separation [26–28]. Yet, these field theories
differ from Model B because locally broken time-reversal
symmetry implies that new nonlinear terms are allowed.
The ensuing minimal theory, Active Model Bþ (AMBþ)
[11,13], including all terms that break detailed balance up
to order Oð∇4ϕ2Þ in a gradient expansion [11,13], is
defined by

∂tϕ ¼ −∇ ·
�
Jþ

ffiffiffiffiffiffiffiffiffiffiffi
2DM

p
Λ
�
; ð1Þ

J=M ¼ −∇μλ þ ζð∇2ϕÞ∇ϕ; ð2Þ

μλ½ϕ� ¼
δF
δϕ

þ λj∇ϕj2; ð3Þ

where F ¼ R
dr½fðϕÞ þ ðKðϕÞ=2Þj∇ϕj2�, fðϕÞ is a dou-

ble-well local free energy, and Λ is a vector of zero-mean,
unit-variance, Gaussian white noises. Model B is recovered
at vanishing activity (λ ¼ ζ ¼ 0), unit mobility (M ¼ 1)
and constant noise level D [26].
It is known that at low activity (small λ, ζ), AMBþ

undergoes conventional bulk phase separation. At higher
activity, Ostwald ripening [29], the classical diffusive
pathway to macroscopic phase separation, can go into
reverse [13]. This explains the emergence of bubbly phase
separation and microphase-separated vapor bubbles. (These
phases arise when ζ; λ > 0; for ζ, λ < 0 the identities of
liquid and vapor phases are interchanged.) More specific
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mechanisms, due to hydrodynamics [24,30] or chemotaxis
[31,32], can also piecewise explain some of these phases.
AMBþ does not refute such specific explanations, but
offers a minimal framework to address generic features of
active phase equilibria. Its simplicity admits both signifi-
cant analytical progress, and efficient numerics.
For active systems showing bulk liquid-vapor phase

separation it has been debated, on the basis of numerical
and analytical studies, how to define the liquid-vapor
interfacial tension [33–39]. One key result of this Letter
is to confirm that no unique definition is possible. Inspired
by work on equilibrium interfaces [28], we derive an
effective equation for the interface height, and calculate
the capillary tension σcw which sets the spectrum of
capillary waves and the relaxation times of height fluctua-
tions. We find σcw differs from σ, the tension introduced in
Ref. [13] to describe the Ostwald process. Whereas σ < 0
in the reverse Ostwald regime, this does not ensure
capillary instability, which instead requires σcw < 0.
When the latter holds, depending on the global density,
we find two new types of active phase separation (Fig. 4),
driven by an interfacial instability of Mullins-Sekerka
type [40]: a microphase-separated droplet state, where
coalescence among droplets is highly inhibited, and an
“active foam” state.
As is standard [13,26], we now set M ¼ 1, assume

constant D, K, and select fðϕÞ ¼ að−ϕ2=2þ ϕ4=4Þ with
a > 0. [Our results can be extended to any double-well f
and any KðϕÞ > 0.] We set ζ > 0, meaning that reversed
Ostwald ripening happens only for vapor bubbles.
The corresponding results for ζ < 0 follow from the
invariance of our model under ðϕ; λ; ζÞ → −ðϕ; λ; ζÞ. We
denote by ϕ1 and ϕ2 the coexisting vapor and liquid
densities in the mean-field limit, D ¼ 0; note that ϕ1;2 ¼
�1 in the passive case only. More generally they are found
by changing variables from ϕ and f to ψ and g: these
“pseudovariables,” introduced in Ref. [41] for ζ ¼ 0 and
then generalized to AMBþ [13], solve K∂2ψ=∂ϕ2 ¼
ðζ − 2λÞ∂ψ=∂ϕ and ∂g=∂ψ ¼ ∂f=∂ϕ≡ μ, whence ψ ¼
Kðexp½ðζ − 2λÞϕ=K� − 1Þ=ðζ − 2λÞ. In terms of them, the
equilibrium conditions μ1 ¼ μ2 and ðμψ −gÞ1¼ðμψ −gÞ2
which select the binodals ϕ1;2 still hold [13,41]. (This
change of variables is primarily a mathematical device for
constructing the phase equilibria; ψ and g have no direct
physical significance beyond this.) All our analytic results
are valid in dimensions d ≥ 2, while our numerics were
done in d ¼ 2 with periodic boundary conditions and
system size Lx × Ly, using a pseudospectral algorithm
with Euler updating [42].
We start, following Ref. [29], by deriving the effective

dynamics for small fluctuations of the interface height
ĥðx; tÞ above a (d − 1) plane, with in-plane and vertical
coordinates ðx; yÞ ¼ r. We assume the absence of over-
hangs. On a rapid timescale, we expect diffusion to
quasistatically relax ϕðr; tÞ to a value that depends only

on the distance to the interface. For small amplitude, long-
wavelength perturbations, the vertical direction and the one
normal to the interface are equivalent and we thus can
assume that

ϕðr; tÞ ¼ φ½y − ĥðx; tÞ�; ð4Þ

where φ is the interfacial profile. By mass conservation, the
spatial average of ĥ is constant; we set ĥ ¼ 0. It will turn
out that ĥ solves a nonlocal equation in space, so we work
in terms of its Fourier transform hðqx; tÞ. We proceed by
plugging Eq. (4) into Eq. (1) and inverting the Laplace
operator. We multiply ∇−2∂tφ by ∂yψ, integrate across the
interface, Fourier transform along the x direction, and
expand in powers of h. Denoting q ¼ jqxj, we obtain [42]

∂th ¼ −
1

τðqÞ hþ χ þOðq2h2Þ; ð5Þ

1

τðqÞ ¼
2σcwðqÞq3

AðqÞ ; ð6Þ

where

σcwðqÞ ¼ σλ þ
3ζ

4

Z
dy1dy2

ðy1 − y2Þ
jy1 − y2j

ψ 0ðy1Þφ02ðy2Þ
eqjy1−y2j

; ð7Þ

σλ ¼ K
Z

dyφ0ðyÞψ 0ðyÞ; ð8Þ

and χ is a zero-mean Gaussian noise with correlations
hχðq1; t1Þχðq2; t2Þi ¼ Cχðq1Þδðq1 þ q2Þδðt1 − t2Þ, with

CχðqÞ ¼ 4ð2πÞd−1 DBðqÞ
A2ðqÞ q: ð9Þ

In Eqs. (6), (9), AðqÞ≡ R
dy1dy2ψ 0ðy1Þφ0ðy2Þ expð−qjy1 −

y2jÞ and BðqÞ≡ R
dy1dy2ψ 0ðy1Þψ 0ðy2Þ expð−qjy1 − y2jÞ.

Note that (5) omits nonlinear terms, derived in the
Supplemental Material [42], that previously arose in
models of conserved surface roughening [43,44].
The effective height equations (5)–(9) are the funda-

mental analytic results of this Letter. For wavelengths much
larger than an interfacial width ξ ∼ ξeq ¼ ð2K=aÞ1=2, we
can replace σcwðqÞ, AðqÞ, and BðqÞ with their limiting
values as q → 0. These, with a slight abuse of notation, are
denoted as σcw; A, and B. Explicitly, the resulting capillary-
wave tension σcw obeys

σcw ¼ σλ −
3ζ

2

Z
dy

�
ψðyÞ − ψ1 þ ψ2

2

�
φ02ðyÞ; ð10Þ

where ψ1;2 ¼ ψðϕ1;2Þ are the pseudodensities at the bino-
dals. As expected, in the equilibrium limit λ; ζ → 0, σcw
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reduces to the standard interfacial tension σeq ¼
K
R
dyφ02ðyÞ. [45] which governs not only the capillary

fluctuation spectrum, but the Laplace pressure and the rate
of Ostwald ripening [28,29]. Switching on activity breaks
this degeneracy. Indeed the tension determining the rate of
Ostwald ripening of a bubble was given in Ref. [13] as
σ ¼ σλ − ζ

R
dy½ψ − ψð0Þ�φ02ðyÞ, where ψð0Þ is the value

of the pseudodensity at the droplet center. Therefore σ is in
general not equal to σcw.
To gain explicit predictions from Eqs. (5)–(9), we must

evaluate σcw, A, and B. This requires knowledge of the
interfacial shape φðyÞ. At equilibrium, this is well known
[45]: φeqðyÞ ¼ � tanhðy=ξeqÞ, with ξeq ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2K=a

p
and

σeq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8Ka=9

p
. (Note that A ¼ B ¼ 4 in this case.)

Also, whenever 2λ ¼ ζ it is readily shown that φ ¼ φeq

so that σcw ¼ σeq, although the Ostwald tensions are
σ ¼ σeqð1 ∓ ζ=KÞ for bubble growth (−) and liquid
droplet growth (þ), respectively [13]. We do not have
closed-form results for σcw at general λ, ζ; however, a
change of variable to wðφÞ ¼ φ02 in the integrals defining
σcw; A; B allows use of a simple numerical procedure
introduced in Ref. [21] and detailed in Ref. [42] to find
the low q behavior. To examine q ≠ 0 below we instead
extract the interface profile from simulations at D ¼ 0.
Figure 1 shows a phase diagram of AMBþ for ζ > 0 at

mean-field level, delineating zones of negative σ and σcw.
(There are none at ζ > 0 and λ < 0). This provides the
full phase diagram of AMBþ: the case of ζ < 0 follows
from Fig. 1 using the symmetry ðλ; ζ;ϕÞ → −ðλ; ζ;ϕÞ of
AMBþ, which interchanges the liquid and vapor identities.
For small activity, or for λζ < 0, σcw > 0, even where
σ < 0; here vapor bubbles undergoing reversed Ostwald
ripening have stable interfaces and, depending on the
global density, the system is either microphase separated
or in bubbly phase separation [13]. At high activity a new

regime emerges where σcw < 0 implying that such inter-
faces (and also flat ones) become locally unstable.
We first consider the regime σcw > 0, where our theory

predicts this capillary tension to govern, via Eq. (6), the
relaxation times of the interface τðqÞ. To check this,
we performed simulations of AMBþ for D ¼ 0 starting
from a phase separated state with the interface perturbed
via a single mode; Fig. 2 confirms that hðq; tÞ ¼
hðq; 0Þ exp½−t=τðqÞ� as predicted by (5)–(9), for either
sign of the Ostwald tension σ. Our theory also predicts
the stationary structure factor of the interface SðqÞ ¼
limt→∞hjhðq; tÞj2i:

SðqÞ ¼ ð2πÞd−1D
σcwðqÞq2

BðqÞ
AðqÞ→qξ−1≪1

ð2πÞd−1Deff

σcwq2
; ð11Þ

where Deff ¼ Dðψ2 − ψ1Þ=ðϕ2 − ϕ1Þ is an effective capil-
lary temperature. Equation (11) generalizes capillary wave
theory. Its equilibrium analog, SðqÞ ∝ D=σeqq2 [46], is
often justified using equipartition arguments but, even in
equilibrium, higher-order gradient terms give subleading
corrections at finite q [47,48]. Activity impacts the inter-
facial fluctuations by renormalizing the temperature
D → Deff and, separately, replacing σeq with σcw. Even
though Eq. (11) also neglects the additional nonlinearities
omitted from Eq. (5), it is quite accurate at smallD (Fig. 2).
The use of capillary wave theory in phase-separated active
systems was previously advocated heuristically [34,36,37],
but until now, only qualitative estimates were provided for
the coefficient Deff=σcw in Eq. (11).
When σcw < 0, a drastically new nonequilibrium phe-

nomenology arises. Although the vapor-liquid interface
is unstable to height fluctuations, the system remains
phase separated. For, unlike in equilibrium where demixing
itself cannot be sustained at negative tension, the active

FIG. 1. Mean-field phase diagram for ζ > 0, showing sign
regimes of interfacial tensions σ and σcw. When σcw > 0, the
interface is stable and unstable otherwise. Orange circles and blue
squares respectively denote the results of direct simulations of
AMBþ where the instability of the interface is or is not observed.
Right: interfacial instability (ζ ¼ 1.5, λ ¼ 2).

FIG. 2. (Left) liquid-vapor interface for σcw>0 (Lx¼Ly¼256),
D ¼ 0; ζ ¼ 2λ and its relaxation compared to the theoretical
predictions for initial perturbations at wave number 2πn=Lx.
Dashed lines are predictions obtained using τðqÞ, converging to
the q → 0 prediction (continuous line). (Right) snapshot in steady
state for D ¼ 5 × 10−3 and scaled structure factor q2SðqÞ=D vs q
compared to the q → 0 analytical prediction; results are averaged
over 30 realisations of duration 106 after equilibration.
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interface does not undergo diffusive collapse but remains
linearly stable against normal perturbations ϕðx; yÞ ¼
φðyÞ þ ∂yϵðyÞ [42,49,50].
Next, we numerically simulated AMBþ at D ¼ 0, with

a noisy initial condition. Orange and blue dots in Fig. 1,
respectively, represent cases where the interfacial fluc-
tuation is damped or amplified (movie 1 in the
Supplemental Material [42]), showing the accuracy of
our analytical predictions. Computing τðqÞ shows that
the first unstable mode is at the lowest q available; thus
the transition line σcw ¼ 0 is critical.
The interfacial instability mechanism (Fig. 3) is remi-

niscent of the Mullins-Sekerka instability in solidification
[40]. In both cases the instability is driven by a single
diffusing field: latent heat in crystal growth, and density
here. Such a diffusing field settles to quasistationary values
ϕB;D
� on the two sides of the interface which depend on the

local curvature. By approximating ϕB;D
� as the densities

near the interface of a vapor bubble (B) or liquid droplet
(D), we find that the diffusive current on the vapor side is
always stabilizing. In contrast, depending on whether
Ostwald ripening is normal or reversed, the current on
the liquid side is stabilizing or destabilizing. Reversed
Ostwald ripening is, however, not sufficient to drive overall

instability of the interface; this arises only if the current on
the liquid side is stronger than the one on the vapor. This
condition sets the threshold beyond which σcw < 0.
Measuring the steady state currents confirms this mecha-
nistic picture [42].
We now report simulations with a small but finite noise

level to ensure reproducible steady states. Starting from a
near-uniform initial state, we find that the final phase
separation is strongly affected by interfacial instability. The
stable case, σcw > 0, was explored in Ref. [13]. For the
unstable case, σcw < 0, the stationary states seen by varying
the global density ϕ0 ¼

R
ϕdr=V are reported in Fig. 4 and

movie 2 in the Supplemental Material [42]. When ϕ0 lies
outside the mean-field binodals ϕ1;2, the system remains
homogeneous. Within them, at large ϕ0 where the liquid is
the majority phase, we find a microphase-separated state
where coalescence of crowded bubbles is highly inhibited.
The bubble size distribution PðAÞ is strongly peaked,
increasingly so as noise decreases, suggesting that the
average bubble size hAi is finite when D → 0. Our results
are converged in time for D > 0.1; at lower noise the
system gets trapped into metastable states, evolving only
because of rare fluctuations of the bubbles interface [42].
Clearly, the average size is not set by the most unstable
mode of the flat interface, as the steady state is attained
through secondary instabilities (movies 1 and 3 in the
Supplemental Material [42]). This phenomenology is at
odds with the bubble phase at σcw > 0 [13], where a
dynamical balance between nucleation, coalescence, and
reversed Ostwald causes hAi → ∞ when D → 0. The
difference between these two microphase separated states
is also apparent dynamically when starting from bulk phase
separation (movie 3 in the Supplemental Material [42]).
When the liquid is the minority phase, bubbles cannot

avoid touching and coalescing. One might expect that the
system attains a microphase separated state of liquid
droplets (for ζ > 0); this is not the case because, as is
clear from our mechanistic argument above, the interfaces
bends toward the vapor side. Instead, we find a distinctive

FIG. 3. Instability at σcw < 0. The densities on the two sides of
the interface adjust quasistatically at values that depend on its
local curvature. The ensuing diffusive density fluxes on the vapor
side is always stabilising (white arrow); that in the liquid is
stabilising when σ > 0 (arrow 1) and becomes destabilizing when
σ < 0 (arrow 2). This (one-sided) reverse-Ostwald current does
not trigger an instability unless the current in the liquid outweighs
that in the vapor, which requires σcw < 0.

FIG. 4. (Left) phase diagram when σcw < 0 as a function of the global density ϕ0 ¼ −1;−0.4, 0.4, 1.2 at D ¼ 0.05, Lx ¼ 256,
Ly ¼ 512, and λ ¼ 1.75, ζ ¼ 2, for which ϕ1 ¼ −0.9, ϕ2 ¼ 1.08. At high and low ϕ0, the system is homogeneous (liquid or vapor
states). Within the binodals, when ϕ0 > ðϕ1 þ ϕ1Þ=2, the system shows microphase-separated vapor bubbles whose coalescence is
highly inhibited. At lower ϕ0, the system forms a continuously evolving active foam state. (Middle and right): area distribution of vapor
regions for the active foam state (ϕ0 ¼ −0.4) and in the microphase-separated state (ϕ0 ¼ 0.2, noise values in the legend).
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form of phase separation, which we call the “active foam”
state. Thin filaments of liquid are dispersed in the vapor
phase, which continuously break up and reconnect. This
state is previously unknown in active scalar models but
resembles patterns that can arise, by a different mechanism,
in active liquid crystals [51]. The filaments are bent on the
most unstable lengthscale of the flat interface. The area
distribution of vapor regions [Fig. 4(b)] is now peaked at
size that corresponds to the merging of two bubbles, but a
power-law tail A−2 emerges, only cutoff by the system size.
The boundaries in ϕ0 between the different phases of Fig. 4
are qualitative: while the vapor density is almost indepen-
dent of ϕ0, the liquid density varies [42].
The techniques introduced here could help elucidate σcw

in particle-based active models, by applying them to
various field-theoretical descriptions obtained by explicit
coarse-graining [13,41,52], or to describe confluent bio-
logical tissues, where the measured interfacial tension was
shown to be dependent on the protocol [53]. The rough-
ening properties of the interface also merit further study:
the anomalous scaling found in particle-based simulations
was interpreted to be in the Edwards-Wilkinson universal-
ity class [36,37]. Dimensional analysis [54] of our linear
theory instead gives the critical exponents z ¼ 3 and
χ ¼ ðz − dÞ=2, where hĥðx; tÞĥðx0; tÞi ∼ jx − x0j2χ and
hĥðx; tÞĥðx; t0Þi ∼ jt − t0j2χ=z. The impact of nonlinearities
should be studied by renormalization methods.
Finally, it is remarkable that (a) the capillary tension can

likewise become negative, and that (b) this leads to new
types of phase separation including active foam states.
Our generic field-theoretical approach is agnostic as to the
microscopic mechanisms underlying activity (and even
phase separation). Therefore the microscopic ingredients
needed for our new phases remain to be identified. For the
same reason, we expect them to be widely present in phase-
separating systems with locally broken detailed balance:
besides motility-induced phase separation [4], applications
might encompass cell sorting in biological tissues [53],
tumor invasion [55], and sociophysics [56].
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