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Residual stress has been empirically utilized for industrial applications to control material strength and
shape of fragments. The interaction between the dynamically growing cracks and the residual stress field is
sufficiently complicated to prevent us from building effective models. To rigorously evaluate the release
and redistribution of residual stress in the dynamic fracture process, we develop a mathematical model and
a numerical analysis method for the dynamic fracture in a residual stress field. Our methodology is simple
and rigorous and applicable regardless of materials and scales.
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Control of the residual stress field is a significant problem
in industrial applications because the residual stress field is
highly related to the strength of the bulk materials. The
tensile residual stress produces a stress concentration at crack
tips and promotes failure. Especially under high tensile
residual stress, the crack rapidly propagates and causes
catastrophic fragmentation of materials [1,2]. However, the
intentional introduction of surface compressive residual
stress by surface machining or a finishing process [3,4]
prevents crack initiation and growth. So far, because the
understanding of this fracture behavior in a residual stress
field is only intuitive, the controlled residual stress field is
empirically employed in manufacturing techniques to
improve material strength.
Fracture behavior in a residual stress field has also

attracted scientific attention. However, dynamic fracture in
a residual stress field brings substantial theoretical complex-
ity because we have to solve the mutual interaction among
crack propagation, change in the residual stress field, and
generation of the elastic wave [5]. Moreover, although the
systems and devices for the full-field measurement of the
stress field have been developed in recent years [e.g., digital
image correlation (DIC) [6–8] and high-speed digital photo-
elasticity [9–13] ], these experimental approaches are limited
to the evaluation of the outer surface residual stress field
(DIC) or the residual stress intensity averaged over the
thickness of the specimen (photoelasticity).
In view of this situation, attempts have been made

toward numerical analysis of crack growth in various
materials with a residual stress field [14–17]. In spite of
these attempts, the achievements of previous work are
mainly confined to the evaluation of the quasistatic
propagation of a single crack. The dynamic propagation
of multiple cracks in a residual stress field is still
unsolved and highly challenging.

Mathematical model.—We first develop the mathemati-
cal model and numerical analysis method for the dynamic
fracture in a residual stress field by applying the discre-
tization scheme proposed in the particle discretization
scheme finite element method (PDS-FEM) to the solid
continuum with a residual stress field [18–20]. We assume
that the elastic deformation is the only source of the
residual stress in the solid material. The total strain tensor
ϵtij, which represents the total deformation from the initial
stress-free state, and the residual stress tensor σij are related
by σij ¼ cijklðϵtkl − ϵpklÞ, where cijkl is the elasticity tensor
and ϵpkl is the permanent inelastic strain tensor. In this
Letter, all the strains that do not contribute to the generation
of the elastic stress (i.e., residual stress) in the linear elastic
material are referred to as the permanent inelastic strain ϵpkl.
Let us consider a deformation problem for the homo-

geneous isotropic linearly elastic body Ω with the pre-
scribed distribution of the inelastic strain. In PDS-FEM, the
analysis domain is discretized by using a pair of conjugate
geometries corresponding to a set of nodes fxαg: Voronoi
tessellations and Delaunay tessellations. Here, the super-
scripts α and β respectively represent the variables for the
αth Voronoi tessellation and the βth Delaunay tessellation.
The discretized strain energy Ĵ stored in Ω is

Ĵ ¼
XM

β¼1

1

2
ðϵtβij − ϵpβij Þcijklðϵtβkl − ϵpβkl ÞΨβ; ð1Þ

where M is the number of Delaunay tessellations
and Ψβ is the volume of the βth Delaunay tessellation.
The summation convention is employed for subscripts
throughout this Letter. This discretized strain energy
Ĵ is expressed in terms of the total displacement utαi
by introducing the displacement-strain relationship in
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discretized form. Then, a set of nodal displacements futαi g
minimizing the discretized strain energy Ĵ is given by the
simultaneous equations (i.e., the equation of the force
equilibrium) as follows:

XN

γ¼1

Kαγ
ik u

tγ
k ¼ fαi ; ð2Þ

where the superscript γ represents the variables for the γth
Voronoi tessellation, N is the number of Voronoi tessella-
tions, andKαγ

ik is the stiffness matrix. This stiffness matrix is
identical to that for the conventional FEM of tetrahedral
elements with linear interpolation functions. Here, the
nodal force is written as fαi ¼

P
M
β¼1 B

βα
j cβijklϵ

pβ
kl Ψβ, where

Bβα
j is the displacement-strain matrix. Because fαi consists

of the spatial derivative operator Bβα
j and the inelastic strain

ϵpβij , f
α
i can be interpreted as the distributed internal force

due to the inhomogeneous inelastic strain, which induces
the residual stress [21,22].
Then, we extend Eq. (2) to the problem of the dynamic

behavior of the solid continuum with a residual stress field.
According to particle discretization, the solid continuum is
expressed as a set of rigid body particles defined by the
Voronoi tessellations. This particle expression enables the
definition of the Hamiltonian for the deformable solid
continuum. Here, we introduce the generalized coordinates
qαi (¼ utαi ), the generalized velocities _qαi (¼ _utαi ), and the
generalized momentum pα

i (¼ mα _qαi ¼ mα _utαi ), where mα

is the mass of the αth Voroni particle. The Hamiltonian H
for the motion of the system of the Voronoi particles with a
residual stress field is given by the sum of the kinetic
energy and the potential energy of the whole body Ω as
follows:

H ¼
XN

α¼1

1

2mαp
α
i p

α
i þ

XN

α¼1

XN

γ¼1

1

2
Kαγ

ij q
α
i q

γ
j −

XN

α¼1

fαi q
α
i : ð3Þ

The time evolution of the system of the Voronoi particles
with a residual stress field is given by Hamiltonian
equations:

_qαi ¼
∂H
∂pα

i
¼ pα

i

mα ¼ _utαi ; ð4Þ

_pα
i ¼ −

∂H
∂qαi ¼ −

XN

γ¼1

Kαγ
ij q

γ
j þ fαi ¼ −

XN

γ¼1

Kαγ
ij u

tγ
j þ fαi :

ð5Þ

In these Hamiltonian equations, the effect of the inelastic
strain is introduced as the nodal force fαi to the time
evolution of the momentum. In the static equilibrium state,
the right-hand side of Eq. (5) becomes zero.

For the fracture criterion, we employ the Griffith
energy criterion [23]. In the framework of PDS-FEM,
the fundamental unit for the expression of the crack
surfaces is the boundary between two adjacent Voronoi
particles. Therefore, the boundary between two adjacent
Voronoi particles Φα and Φγ , denoted as ∂Φαγ , is fractured
when ΔU ≥ 2ΓS is satisfied. Here, ΔU is the released
potential energy of the total system due to fracture of ∂Φαγ ,
S is the area of ∂Φαγ, and Γ is the surface energy
determined on each material; the derivation of ΔU is
provided in Ref. [24]. When ∂Φαγ is fractured, the
displacement-strain matrix Bβα

j and the stiffness matrix
Kαγ

ij related to ∂Φαγ are modified.
In the dynamic problems, this modification of the

matrices is embedded in Eq. (5). In particular, the nodal
force fαi becomes

fαi ¼
XM

β¼1

Bβα�
j cβijklε

pβ�
kl Ψβ

∀ α; β; γ s:t: ∂Φαγ in Ψβ is fractured: ð6Þ

Here, the superscript � represents the variables of partially
fractured Delaunay tessellations. When the initial cracks
are introduced, the nodal force fαi and the components of
the stiffness matrix Kαγ

ij are modified due to the change in

Bβα
j . At this time, the right-hand side of Eq. (5) is no longer

equal to zero and the solid continuum starts to exhibit
dynamic behavior. Therefore, the dynamic fracture process
in a residual stress field can be understood as the process of
shifting to the new self-equilibrium state determined so as
to satisfy the equilibrium condition of the distributed
internal force in each and every local neighborhood.
This is how the release and redistribution of the residual
stress in the fracture process can be rigorously evaluated.
The detailed formulation and numerical analysis method
are provided in Ref. [24].
Experiment.—For the validation of the proposed model,

we performed fracture experiments on chemically tempered
glass sheets. Chemical tempering improves the strength of
the glass sheet by artificially introducing a residual stress
field in the manufacturing process through chemical treat-
ment [24–27]. This residual stress field is controlled so as
to be a compression in the outer surfaces and a tension in
the interior of the glass plate to prevent growth of the
surface flaws. The in-plane residual stress distribution is
volumetric and uniform (i.e., σxx ¼ σyy ¼ const., σxy ¼ 0

when the thickness direction is set to be the z direction) and
the out-plane normal residual stress is zero (i.e., σzz ¼ 0).
The residual stress profile in the thickness direction is
characterized by the compressive residual stress at the outer
surfaces (CS), the tensile residual stress at the midplane
in the thickness direction (CT), and the depth of the
compression layer (DOL). The fracture pattern of the
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chemically tempered glass plate strongly depends on CT
and DOL. We prepared thin rectangular plates of chemi-
cally tempered glass (lx × ly × lz ¼ 50 × 2.0 × 0.70 mm)
with three types of different residual stress profiles, referred
to as case I, II, and III: CT ¼ 52 MPa and DOL ¼ 39 μm
in case I, CT ¼ 75 MPa and DOL ¼ 55 μm in case II, and
CT ¼ 112 MPa and DOL ¼ 80 μm in case III. Then, the
impactor was made to collide with the short side of the
tempered glass plate to generate the initial crack and start a
dynamic fracture. The approximate impact energy was
44 mJ. This energy was the same for all experiments. The
collision of the impactor has no influence on the dynamic
fracture process of the chemically tempered glass sheets
because this collision does not cause catastrophic failure of
the annealed glass sheets. The crack patterns of each glass
plate are compared with the results of numerical analyses.
Numerical analysis.—We performed a numerical ana-

lysis simulating the fracture experiments of chemically
tempered glass sheets presented in the previous section. We
modeled the fracture experiments as shown in Fig. 1(a). We
prepared the finite-element model with the unstructured
tetrahedral mesh of the uniform element size. The number
of nodes was 96 049 195 and the number of elements was
609 287 176. The average nodal distance was 9.36 μm. The
residual stress profiles of the analysis models were adjusted
to those of the three types of experimental samples with
respect to CT and DOL [see Fig. 1(b)]. The detailed method
for obtaining the residual stress profile of the analysis model

is provided in Ref. [24]. Then, we placed the initial crack at
time t ¼ 0.0 s and integrated the Hamiltonian equations
[Eqs. (4) and (5)] for the constant time step Δt ¼ 0.5 ns by
using a symplectic integrator (SI) [28]. The traction-free
boundary condition was applied to all the nodes at the
surface of the analysis model. At each time step, all the
Voronoi boundaries adjacent to the already fractured
boundaries were examined to check if they satisfied the
fracture criterion. Here, the mass density ρ ¼ 2500 kg=m3,
the Young’s modulus E ¼ 74.0 GPa, the Poisson’s ratio
ν ¼ 0.22, and the surface energy Γ ¼ 4.0625 J=m3.
Comparisons of the fracture patterns between the experi-

ments and numerical analyses with the different residual
stress profiles are presented in Figs. 2(a) and 2(b). These
figures show the crack patterns projected on the xy plane.
Also, the fracture patterns obtained from the numerical
analyses show perfect agreement with the experimental
observations on every sample with different residual stress
profiles; the crack does not bifurcate for case I, the crack
branches only once to two or three cracks for case II, and
the cracks repetitively branch and cause catastrophic failure
for case III.
We measured the crack velocity in both experiments

and numerical analyses [Figs. 3(a) and 3(b)]. For case I,
the crack velocity transitions from about 1500 m=s to
2000 m=s, and it never exceeds 2000 m=s. However, for
cases II and III, the crack velocity almost reaches or
exceeds 2000 m=s. At this point, the cracks branch and

(a)

(b)

FIG. 1. Geometry of the analysis model and residual stress profiles of each analysis model. (a) Geometry of the analysis model with
the initial crack. lx × ly × lz ¼ 30 × 2.0 × 0.70 mm. The initial crack is indicated by the red (dark gray) area. All the Voronoi
boundaries in the initial crack area are fractured at t ¼ 0.0 s. (b) The in-plane residual stress profiles (i.e., σxx or σyy) in the z direction
for each analysis model. The horizontal axis shows the distance from the midplane (i.e., z ¼ lz=2 plane) in the z direction. The in-plane
residual stress profile is symmetrical with respect to the midplane in the z direction.
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the crack velocity rapidly decreases near or below
2000 m=s. The experiments [Fig. 3(a)] and the numerical
analyses [Fig. 3(b)] show perfect agreement in all these
characteristics of the crack velocity.
Figures 4(a)–4(c) show the time history of the residual

stress field at the midplane in the thickness direction
obtained by the numerical analyses. The elastic wave
generated by the fracture propagates antecedent to the
crack tip. Also, the stress concentrates at the crack tips

and is released around the cracks. Contrary to the external
applied loading, the distributed internal force due to
inhomogeneous inelastic strain keeps acting on every local
area even after fracture. This remaining internal force
causes repetitive branching and catastrophic failure as seen
in case III. The remaining residual stress in the isolated
fragments forms a concentric distribution in each fragment.
The residual stress distribution of the fragments and the
release and the redistribution process of the residual stress

(a) (b)

FIG. 2. Crack patterns of the chemically tempered glass sheets. (a) Crack patterns in the experiments. The width of the field of view of
the experiments is about 8–10 mm from the impact surface. (b) Crack patterns in the numerical analyses. These snapshots trim off the
area of x > 10 mm.

(a)

(b)

FIG. 3. Crack velocity vs distance from the impact surface with branching points. The positions of the branching points are indicated
by the blue triangles. The crack velocity and the branching points were measured on the main crack in the field of view. The yellow
(light gray) lines and the blue circles on the images of the crack patterns placed below each graph respectively show the main crack and
the crack branching points used for the measurement. (a) Experiments. (b) Numerical analyses.
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field during fracture cannot be captured by experimental
methods. This is why numerical analysis is essential for
fully understanding the crack propagation in a residual
stress field.
Discussion.—We proposed a mathematical model and

numerical analysis method for dynamic crack propagation
in a residual stress field. Our model and method are
validated through fracture experiments of the chemically
tempered glass sheets. The fracture patterns and fracture
processes depending on the residual stress profiles are
perfectly reproduced by numerical analyses. Also, the crack
velocity and the critical velocity for crack branching given
by the numerical analyses coincide with the experimental
observations. These results show that our model completely
captures the mechanism for the dynamic fracture in a
residual stress field. Our model suggests that the distributed
internal force due to the inhomogeneous inelastic defor-
mation plays a significant role in the dynamic fracture. This
force keeps acting on every local area even in isolated
fragments and thereby causes catastrophic fragmentation
particularly observed in a residual stress field. Regardless
of the source of the residual stress, this model is widely
applicable to the dynamic fracture in a residual stress field.
In addition, we visualized the process of the release and
redistribution of the residual stress by numerical analyses,
which are unobservable in experiments. This visualization
will help us understand the change in the residual stress
field and design the residual stress profile for industrial
applications. We anticipate that the proposed model and
method to be a general framework for quantitative evalu-
ation and prediction for the dynamic fracture in a residual
stress field.
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